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Abstract

A study of Sophie Germain’s extensive manuscripts on Fermat’s
Last Theorem calls for a reassessment of her work in number theory.
There is much in these manuscripts beyond the single theorem for
Case 1 for which she is known from a published footnote by Legendre.
Germain had a fully-fledged, highly developed, sophisticated plan of
attack on Fermat’s Last Theorem. The supporting algorithms she
invented for this plan are based on theoretical concepts, ideas and
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results discovered independently only much later by others, and her
methods are quite different from any of Legendre’s. In addition to her
program for proving Fermat’s Last Theorem in its entirety, Germain
also made major efforts at proofs for particular families of exponents.
The isolation Germain worked in, due in substantial part to her difficult
position as a woman, was perhaps sufficient that much of this extensive
and impressive work may never have been studied and understood by
anyone.

Une étude approfondie des manuscrits de Sophie Germain sur le
dernier théoréme de Fermat, révéle que 'on doit réévaluer ses travaux
en théorie des nombres. En effet, on trouve dans ses manuscrits beau-
coup plus que le simple théoréme du premier cas que Legendre lui
avait attribué dans une note au bas d’une page et pour lequel elle est
reconnue. Mme Germain avait un plan trés élaboré et sophistiqué pour
prouver entiérement ce dernier théoréme de Fermat. Les algorithmes
qu’elle a inventés sont basés sur des concepts théoriques qui ne furent
indépendamment découverts que beaucoup plus tard. Ses méthodes
sont également assez différentes de celles de Legendre. En plus, Mme
Germain avait fait de remarquables progrés dans sa recherche concer-
nant certaines familles d’exposants. L’isolement dans lequel Sophie
Germain se trouvait, en grande partie di au fait qu’elle était une
femme, fut peut-étre suffisant, que ses impressionnants travaux au-
raient pu passer complétement inapercus et demeurer incompris.

Das Studium von Sophie Germains extensiven Manuskripten iiber
den Fermat Satz legt eine Neuauslegung ihrer zahlentheoretischen Ar-
beiten nahe. Diese Manuskripte enthalten viel mehr als nur das einzige
Theorem {iber Fall I fiir das sie aufgrund einer versffentlichten Fuss-
note von Legendre bekannt ist. Germain hatte einen umfassenden,
ausgereiften und tiefgehenden Angriffsplan fiir das Fermat Problem.
Die zugrundeliegenden Algorithmen die sie dafiir erfand basieren auf
theoretischen Konzepten, Ideen und Resultaten die erst viel spéter von
anderen unabhéngig wiederentdeckt wurden, und ihre Methoden un-
terscheiden sich deutlich von denen Legendres. Uber ihr Programm das
Fermatsche Problem komplett zu 16sen hinaus hat Germain auch grosse
Anstrengungen gemacht Beweise fiir einzelne Familien von Exponen-
ten zu finden. Die Isolation in der Germain arbeitete war vielleicht
genug dass vieles dieses ausgreifenden und beeindruckenden Werkes
der Nachwelt verloren hiitte gehen koennen.
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1 Introduction

Sophie Germain was the first woman known for important original research
in mathematics.! While Germain is perhaps best known for her work in
mathematical physics, her number theoretic research on Fermat’s Last The-
orem has been considered by many to be her best mathematics. We will
make a substantial reevaluation of her work on the Fermat problem, based
on translation and detailed mathematical interpretation of numerous doc-
uments in her own hand, heretofore perhaps never seriously analyzed, and
will argue that her accomplishments are much broader, deeper, and more
significant than has ever been realized.

On the twelfth of May, 1819, Sophie Germain penned a letter from her
Parisian home to Carl Friedrich Gauss in Gottingen [Gel]. Most of this
lengthy letter describes in some detail her work on substantiating Pierre de
Fermat’s claim that the equation zP = zP + yP has no solutions in positive
natural numbers for exponents p > 2. The challenge of proving this famous
assertion of Fermat has had a tumultuous history, culminating in Andrew
Wiles’ success at the end of the twentieth century [Ri].

Shortly we shall see what astonishing words Germain wrote to Gauss in
her letter of 1819, but first let us briefly recap, for both context and contrast,
exactly what she has been known for from the number theory literature.

Once Fermat’s claim had been proven by Euler for exponent 4 in the
eighteenth century, it could be fully confirmed by substantiating it just for
odd prime exponents. But when Germain began working on the problem
at the turn of the nineteenth century, the only prime exponent that had
a proof was 3 [Ed, Ri]. In 1823 Adrien-Marie Legendre wrote a treatise
on Fermat’s Last Theorem, ending with his own ad hoc proof for exponent
5. What interests us, though, is the first part of Legendre’s treatise, since
Germain’s work on the Fermat problem has long been understood to be
entirely described by a single footnote there [Di, Ed, Le, Ri]. Here Legendre
presents a general analysis of the Fermat equation, whose main theoretical
highlight is a theorem encompassing all odd prime exponents. In modern
terminology:

Sophie Germain’s Theorem. For an odd prime exponent p, if there exists
an auxiliary prime 6 such that there are no two nonzero consecutive p-th
powers modulo 0, nor is p itself a p-th power modulo 6, then in any solution

LA good biography of Germain, with concentration on her work in elasticity theory,
discussion of her personal and professional life, and references to the historical literature
about her, is the book by Louis Bucciarelli and Nancy Dworsky [BD].



to the Fermat equation 2P = xP 4+ yP, one of x, y, or z must be divisible by
2

e

Legendre supplies a table verifying the hypotheses of the theorem for
p < 100 by brute force display of all the p-th power residues modulo a single
auxiliary prime 6 chosen for each value of p. Legendre then credits Sophie
Germain with both the theorem, which is the first general result about ar-
bitrary exponents for Fermat’s Last Theorem, and its successful application
for p < 100. One assumes from Legendre that Germain developed the brute
force table of residues as her means of verification and application of her the-
orem. Legendre continues on to develop more theoretical means of verifying
the hypotheses of Sophie Germain’s Theorem, and he also pushes the analy-
sis further to demonstrate that any solutions to certain Fermat equations
would have to be extremely large.

For almost two centuries, it has been assumed that this theorem and
its brute force tabular application to exponents less than 100 constitute
Germain’s entire work in this area, the basis of her reputation [Ed, Ri].
However, we will find that this presumption is dramatically off the mark
as we study Germain’s manuscripts. It is not easy to decipher Germain’s
handwriting, translate, fill in gaps, and understand both the grammar and
the mathematics of the extant archive material in Germain’s hand. But
the reward is a wealth of new material, a vast expansion over the very
limited information known just from Legendre’s footnote. We will explore
the much enlarged scope and extent of Germain’s work that is revealed,
and its ambitiousness and importance. Together these will prompt a major
reevaluation, and recommend a substantial elevation of her reputation.

Before going directly to Germain’s own writing, we note that even the
historical record based solely on Legendre’s footnote has been unjustly por-
trayed. Even the limited results that Legendre clearly attributed to Ger-
main have been badly understated and misattributed in much of the vast
secondary literature. Some writers state only weaker forms of Sophie Ger-
main’s Theorem, such as merely for p = 5, or only for auxiliary primes of the
form 2p + 1 (known as “Germain primes”, which happen always to satisfy
the two required hypotheses). Others only conclude divisibility by the first
power of p, and some writers have even attributed the fuller p?-divisibility,
or the determination of qualifying auxiliaries for p < 100, to Legendre rather
than to Germain. A few have even confused the results Legendre credited to
Germain with a completely different claim she had made in her first letter
to Gauss, in 1804 [St]. Fortunately a few books have correctly stated Legen-
dre’s attribution to Germain [Di, Ed, Ri]. We will not elaborate in detail on



the huge related mathematical literature except for specific relevant com-
parisons of mathematical content with Germain’s own work. Ribenboim’s
most recent book [Ri] gives a good overall history of related developments,
including windows into the large intervening mathematical literature.

In spite of the failures of much of the literature to report accurately the
credit Legendre gave her, Sophie Germain’s Theorem can clearly be used,
by producing a valid auxiliary, to eliminate the existence of solutions to the
Fermat equation involving numbers not divisible by the exponent p. This
elimination is today called “Case 1” of Fermat’s Last Theorem. Work on
Case 1 has continued to the present, and major results, including for instance
its recent establishment for infinitely many prime exponents p [AH, Fol, have
been proven by building on the very theorem that Germain introduced.

1.1 Gauss and Germain on number theory

Let us compare the meager published historical record, responsible for her
reputation, with Germain’s own words to Gauss. Her 1819 letter was written
after an eleven year hiatus in their correspondence, so she had much to catch
up on. The letter describes the broad scope of Germain’s many years of
work, in addition to much detail on her program for proving Fermat’s Last
Theorem:

OXDXDXXIXDXIXDO

[...] Although | have worked for some time on the theory of vibrating surfaces
[...]. | have never ceased thinking about the theory of numbers. | will give you a
sense of my absorption with this area of research by admitting to you that even
without any hope of success, | still prefer it to other work which might interest
me while | think about it, and which is sure to yield results.

Long before our Academy proposed a prize for a proof of the impossibility
of the Fermat equation, this type of challenge, which was brought to modern
theories by a geometer who was deprived of the resources we possess today,
tormented me often. | glimpsed vaguely a connection between the theory of
residues and the famous equation; | believe | spoke to you of this idea a long
time ago, because it struck me as soon as | read your book.?

OXDXDXXDXDXXDO

2«Quoique j’ai travaillé pendant quelque tem[p]s a la théorie des surfaces vibrantes
[...], je n’ai jamais cess¢ de penser a la théorie des nombres. Je vous donnerai une ideé
de ma préoccupation pour ce genre de recherches en vous avouant que méme sans aucune
esperance de succes je la prefere a un travail qui me donnerais necessairement en resultat
et qui pourtant m’interresse ... quand j’y pense.



Clearly number theory held a very special fascination for Germain through-
out much of her life. Largely self-taught, due to her exclusion as a woman
from higher education and normal subsequent academic life, she first stud-
ied Legendre’s Théorie des Nombres, published in 1789, and then devoured
Gauss’ Disquisitiones Arithmeticae when it appeared in 1801. Gauss’ work
was a complete departure from everything that came before, and established
number theory as a mathematical subject in its own right, with its own body
of methods and techniques, such as the theory of congruences. Germain ini-
tiated a correspondence with Gauss, initially under the male pseudonym
LeBlanc, which continued for a number of years and gave tremendous impe-
tus to her work. In this early exchange of letters lasting from 1804 to 1808,
she sent Gauss some of her work on Fermat’s Last Theorem stemming from
inspiration she had received from his Disquisitiones. Excerpts can be found
in Chapter 3 of [BD] and in [St].

Gauss was greatly impressed by Germain’s work, and was even stimu-
lated thereby in some of his own, as evidenced by his remarks in a number
of letters to his colleague Wilhelm Olbers. On September 3, 1805 Gauss
wrote [Sc, p. 268]: “Through various circumstances — partly through sev-
eral letters from LeBlanc in Paris, who has studied my Disq. Arith. with
a true passion, has completely mastered them, and has sent me occasional
very respectable communications about them, [...] I have been tempted into
resuming my beloved arithmetic investigations.” After LeBlanc’s true iden-
tity was revealed to him, he writes again to Olbers, on March 24, 1807 [Sc,
p. 331]: “Recently my Disq. Arith. caused me a great surprise. Have I not
written to you several times already about a correspondent LeBlanc from
Paris, who has given me evidence that he has mastered completely all in-
vestigations in this work? This LeBlanc has recently revealed himself to me
more closely. That LeBlanc is only a fictitious name of a young lady Sophie
Germain surely amazes you as much as it does me.”

Gauss’ letter of July 21 of the same year shows that Germain was a
valued member of his circle of correspondents [Sc, pp. 376-377]: “Upon my
return I have found here several letters from Paris, by Bouvard, Lagrange,
and Sophie Germain. [...] Lagrange still shows much interest in astronomy
and higher arithmetic; the two sample theorems (for which prime numbers

“Longtems [sic] avant que notre academie ais proposé pour sujet de prix la démon-
stration de 'impossibilité de ’équation de Fermat ces espece de défi—porté aux théories
modernes par un géometre — qui fus privé des resources que nous possedons aujourd’hui
me tourmentois souvent. Y’entrevoyais vaguement une liaison entre la théorie des residues
et la fameuse équation, je crois méme vous avoir parlé anciennement de cette ideé car elle
m’a frappé aussitot que j’ai connu votre livre.”



is two a cubic or biquadratic residue), which I also told you about some
time ago, he considers ‘that which is most beautiful and difficult to prove.’
But Sophie Germain has sent me the proofs for them; I have not yet been
able to look through them, but I believe they are good; at least she has
approached the matter from the right point of view, only they are a little
more long-winded than will be necessary.”

The two theorems on power residues were part of a letter Gauss wrote
to Germain on April 30, 1807 [Gal, vol. 10, pp. 70-74]. Together with these
theorems he also included, again without proof, another result now known
as Gauss’ Lemma, from which he says one can derive special cases of the
Quadratic Reciprocity Theorem. In a May 12, 1807 letter to Olbers, Gauss
says “Recently I replied to a letter of hers and shared some Arithmetic with
her, and this led me to undertake an inquiry again; only two days later I
made a very pleasant discovery. It is a new, very neat, and short proof of
the fundamental theorem of art. 131.”[Gal, vol. 10, p. 566] The proof Gauss
is referring to, based on the above lemma in his letter to Germain, is now
commonly called his “third” proof of the Quadratic Reciprocity Theorem,
and was published in 1808 [Ga2], where he says he has finally found “the
simplest and most natural way to its proof” (see also [LP1, LP2]).

1.2 Sophie Germain’s explication to Gauss of her grand plan

Germain continues the letter of 1819 to Gauss by explaining her major effort
to prove Fermat’s Last Theorem:

OXDXDXXIXDXIXDO

Here is what | have found: [...]

The order in which the residues (powers equal to the exponent) are distrib-
uted in the sequence of natural numbers determines the necessary divisors which
belong to the numbers among which one establishes not only the equation of
Fermat, but also many other analogous equations.

Let us take for example the very equation of Fermat, which is the simplest
of those we consider here. Therefore we have zP = zP + yP, p a prime number.
| claim that if this equation is possible, then every prime number of the form
2Np + 1 (N being any integer), for which there are no two consecutive p-th
power residues in the sequence of natural numbers, necessarily divides one of
the numbers x, y, and z.



This is clear, since [if not] the equation zP = zP + yP yields the congruence
1 = 7P — r'P in which r represents a primitive root and s and t are integers.?
]

It follows that if there were infinitely many such numbers, the equation
would be impossible.

| have never been able to arrive at the infinity, although | have pushed back
the limits quite far by a method of trials too long to describe here. | still dare
not assert that for each value of p there is no limit beyond which all numbers
of the form 2Np + 1 have two consecutive p-th power residues in the sequence
of natural numbers. This is the case which concerns the equation of Fermat.

You can easily imagine, Monsieur, that | have been able to succeed at proving
that this equation is not possible except with numbers whose size frightens the
imagination; because it is also subject to many other conditions which | do not
have the time to list because of the details necessary for establishing 77 7777
But all that is still not enough; it takes the infinite and not merely the very
large.t

OXDXDXIXDXDXXDO

3Germain is considering congruence modulo the auxiliary prime § = 2Np + 1. She is
observing that if none of x, y, z were divisible by @, then division of the Fermat equation by
P or y? would produce two nonzero consecutive p-th power residues. Her claim follows.

4 “Voici ce que j’ai trouve:

“L’ordre dans lequel les residus (puissances egales a ’exposant) se trouvent placés dans
la serie des nombres naturels détermine les diviseurs necessaires qui appartiennens aux
nombres entre lequels on établis non seulement I’équation de Fermat mais encore beaucoup
d’autres équations analogues a celle la.

“Prenons pour example I’équation méme de Fermat qui est la plus simple de toutes
celles dont il s’agit ici. Soit donc, p étant un nombre premier, z¥ = P + yP. Je dis que
si cette équation est possible, tous [sic] nombre premier de la forme 2Np + 1 (N étant un
entier quelconque) pour lequel il n’y aura pas deux résidus ¢ puissance placés de suite
dans la serie des nombres naturels divisera nécessairement I'un des nombres x y et z.

“Cela est évident, car ’équation 2P = zP 4+ y” donne la congruence 1 = 7 — r'? dans
laquelle r represente une racine primitive et s et t des entiers.

“... Il suis dela que s’il y avois un nombre infini de tels nombres 1’équation serois
impossible.

“Je n’ai jamais pa arriver a l'infini quoique j’ai reculé bien loin les limites par une
methode de tatonnement trop longue pour qu’il me sois possible de ’exposer ici. Je
n’oserois méme pas affirmer que pour chaque valeur de p il n’existe pas une limite audela
delaquelle tous les nombres de la forme 2Np + 1 auroient deux résidus p'®™° placés de
suite dans la serie des nombres naturels. C’est le cas qui interesse ’équation de Fermat.

“Vous concevrez aisement, Monsieur, que j’ai dit parvenir a prouver que cette équation
ne serois possible qu’en nombres dont la grandeur effraye 'imagination; Car elle est encore
assujettée a bien d’autres conditions que je n’ai pas le tems [sic] d’énumerer a cause des
details necessaire pour en établir 7lu? 7reassité?. Mais tout cela n’est encore rien, il faut
Pinfini et non pas le trés grand.”



Several things are remarkable here. Most surprisingly, Germain does not
mention to Gauss anything even hinting at the only result she is actually
known for in the literature, what we call Sophie Germain’s Theorem. Why
not? Where is it? Instead, Germain explains a plan, simple in its conception,
for proving Fermat’s Last Theorem outright. It requires that, for a given
prime exponent p, one establish infinitely many auxiliary primes each satis-
fying a non-consecutivity condition on its p-th power residues (note that this
condition is the very same as one of the two hypotheses required in Sophie
Germain’s Theorem for proving Case 1, but there one only requires a single
auxiliary prime, not infinitely many). She writes that she has worked long
and hard at this plan by developing a method for verifying the condition,
made great progress, but has not been able to bring it fully to fruition (even
for a single p) by verifying the condition for infinitely many auxiliary primes.
She also writes that she has proven that any solutions to a Fermat equation
would have to frighten the imagination with their size. And she explains in
broad outline all her work on the problem. Clearly we should now be very
curious about her work in these two directions, perhaps completely distinct
from the theorem for which Legendre cites her.

1.3 Our manuscript sources

Fortunately, the Germain biography [BD], which led us to her letter to
Gauss, also tells us that many of Germain’s manuscripts lie in the archives
of the Bibliothéque Nationale in Paris. Many others are also held in the Bib-
lioteca Moreniana, in Firenze (Florence), Italy [Ce, Cel]. The story of how
Germain’s manuscripts ended up in these two collections is an extraordi-
nary and fascinating one, a consequence of the amazing career of Guglielmo
(Guillaume) Libri, mathematician, historian, bibliophile, thief, and friend of
Sophie Germain [Ce, RM]. In particular, it appears that many of Germain’s
manuscripts in the Bibliothéque Nationale were probably among those con-
fiscated by the police from Libri’s apartment at the Sorbonne when he fled
to London in 1848 to escape the charge of thefts from French public libraries
[Ce, p. 146]. The Germain manuscripts in the Biblioteca Moreniana were
among those shipped with Libri’s still remaining vast collection of books and
manuscripts before he set out to return from London to Florence in 1868.
The Germain materials are among those fortunate to have survived intact
despite a tragic string of events following Libri’s death in 1869 [Ce, Cel]’.

?See also [Ce2, Ce3, Ced] for the fascinating story of Abel manuscripts discovered in
the same Libri collections.
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How Libri obtained Germain’s manuscripts remains unknown, but it
would be entirely in character for him to have managed this, since by hook
or by crook he built a gargantuan private library of important books, man-
uscripts, and letters [Ce].5 We should probably thank Libri, the efforts of
many others after his death, and much good fortune, for saving Germain’s
amazing manuscripts. Otherwise they might well simply have drifted into
oblivion.

There are hundreds of sheets of Germain’s handwritten papers in the
Bibliothéque Nationale, many of them number theory. They are almost
all undated, relatively unorganized, almost all unnumbered except by the
archive. And they range all the way from scratch paper to some beautifully
polished finished pieces, in handwriting that is sometimes extremely diffi-
cult to decipher. It appears that their mathematical content has received
little attention in the nearly two centuries since Germain wrote them. We
cannot possibly provide a definitive evaluation here of this treasure trove
of Germain’s manuscripts in the Bibliothéque Nationale, as well as those
in the Biblioteca Moreniana. Rather, we will focus our attention in these
manuscripts on the major claims she made in her 1819 letter to Gauss, their
potential relationship to Sophie Germain’s Theorem, and her other work on
Fermat’s Last Theorem.

We will explain some of Germain’s most important mathematical ap-
proaches to Fermat’s Last Theorem, provide a sense for the results she
successfully obtained, compare them with the impression of her work left
by Legendre’s treatise, and in particular discuss possible overlap between
Germain’s work and Legendre’s. We will also find connections between Ger-
main’s work on Fermat’s Last Theorem and that of mathematicians of the
later nineteenth and twentieth centuries. Finally, we will discuss claims in
Germain’s manuscripts to have actually fully proven Fermat’s Last Theorem
for certain exponents.

The assessment presented here is based principally on study of her two
undated manuscripts entitled Remarques sur ["impossibilité de satisfaire en
nombres entiers a l’équation P + yP = 2P [Ge2, pp. 198 (right)—208 (left)]
(hereafter called Manuscript A, 20 sheets numbered in her hand, but at-
tached two to one to the archive numbering), and Démonstration de l’impossibilité
de satisfaire en nombres entiers o l'équation z2(8nE3) — ¢ 2(8nE3) 4 ;.2(8n+3)

6 After his expulsion from Tuscany for his role in the plot to persuade the Grand-Duke
to promulgate a constitution, Libri traveled for many months, not reaching Paris until
fully six months after Germain died, making it all the more extraordinary that it seems
he ended up with almost all her papers. [Ce, p. 142f]

11



[Ge2, pp. 92 (right)-94 (left)] (Manuscript B, 4 sheets)?, along with a pol-
ished set of three pages [Ge3, p. 348 (right)-349 (right)] (Manuscript C)
stating and claiming a proof of Fermat’s Last Theorem for all even expo-
nents. These three manuscripts are found in the Bibliothéque Nationale.
We will also compare Manuscript A with another very similar manuscript of
the same title, held in the Biblioteca Moreniana (Manuscript D, 25 pages,
the 19th blank; see our discussion) [Geb, cass. 11, ins. 266][Ce, p. 234].
Together these appear to be her primary pieces of polished work in these
archives on Fermat’s Last Theorem. Nevertheless, our assessment is based
on only part of her approximately 150-200 pages of number theory manu-
scripts in the Bibliothéque, and other researchers may ultimately have more
success than we at deciphering, understanding, and interpreting them. Also,
there are numerous additional Germain papers in the Biblioteca Moreniana
that may yield further insight [Ce, Cel]. Finally, even as our analysis and
evaluation answers many questions, it will also raise numerous new ones, so
there is fertile ground for much more study of her manuscripts by others.
In particular, questions of the chronology of much of her work, and of her
interaction with others, still contain enticing perplexities.

1.4 The major divisions of Germain’s work

In section 2 we will elucidate from Manuscripts A and D the methods Ger-
main developed in her “grand plan” for proving Fermat’s Last Theorem
outright, the progress she made, and its difficulties. We will compare Ger-
main’s methods with her explanation to Gauss and Legendre’s work. More-
over, the non-consecutivity condition on p-th power residues, which is key to
both Germain’s grand plan and to utilizing her theorem to prove Case 1, has
been pursued by later mathematicians all the way to the present day, and
we will compare her approach to later ones. We will also explore whether
Germain at some point realized that her grand plan could not be carried
through, using the published historical record and a single relevant letter
from Germain to Legendre.

In section 3 we will explore Germain’s effort at proving and applying
a theorem which we shall call “Large size of solutions”, whose intent is to
convince that any solutions which might exist to a Fermat equation would
have to be astronomically large, the second point she mentioned to Gauss.
Her effort is challenging to evaluate, since her proof as given in the pri-
mary manuscript is flawed, but she later recognized this and attempted to

"Part of this manuscript, essentially the content of Sophie Germain’s Theorem, was
translated and discussed in [LP].
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compensate. Moreover Legendre published similar results and applications,
which we will contrast with Germain’s. We will discover that the theorem
which has been known in the literature as Sophie Germain’s Theorem is
simply minor fallout from her “Large size of solutions” analysis, and we
compare some of the methods used by later workers to apply her theorem
with her own methods.

Germain’s mathematical aims, namely her grand plan, large size of solu-
tions, and p2-divisibility (which includes Case 1), are all intertwined in her
manuscripts, largely because the hypotheses needing verification overlap.
We have separated our exposition of them, however, in order to facilitate
direct comparison with Legendre’s treatise, which had a different focus but
much apparent overlap with Germain’s, and to enable easier comparison
with the later work of others.

In section 4 we will analyze Manuscript B, which claims proof of Fermat’s
Last Theorem for a large family of exponents, by building on an essentially
self-contained statement of Sophie Germain’s Theorem. And in section 5
we consider a very different approach (Manuscript C) claiming to prove
Fermat’s Last Theorem for all even exponents, based on the impossibility of
another Diophantine equation.

1.5 Reevaluation

Our paper will end with an assessment of Germain’s full-fledged attack on
Fermat’s Last Theorem, her analysis leading to claims of astronomical size
for any possible solutions to the Fermat equation, the fact that Sophie Ger-
main’s Theorem is in the end a small piece of something much more ambi-
tious, our assessment of how independent her work actually was from her
mentor Legendre’s, of the methods she invented for verifying various condi-
tions, and the paths unknowingly taken in her footsteps by later researchers.
We propose that a substantial reevaluation is in order. The results Sophie
Germain obtained and the methods she developed place her at the forefront
of number-theoretic research in the early nineteenth century.

2 Sophie Germain’s grand plan

In her letter to Gauss [Gel] in 1819, Germain summarized her plan for prov-
ing Fermat’s Last Theorem. Our aim is to show its promise, thoroughness
and sophistication.

Manuscript A contains, among other things, the details of this program
for producing, for each odd prime exponent p, an infinite sequence of quali-

13



fying auxiliary primes, which, as she explained to Gauss, would prove Fer-
mat’s Last Theorem. This occupies more than 16 pages of the manuscript,
in very fine, detailed, polished writing. We analyze Germain’s plan in this
section, ending with a comparison between Manuscripts A and D and what
it suggests.

2.1 Germain’s plan for proving Fermat’s Last Theorem
Let us call Germain’s condition on auxiliary primes § = 2Np + 1

Condition N-C (Non-Consecutivity). There are no two nonzero consecutive
p™" power residues, modulo 6.

Early on in Manuscript A, Germain states that for each fixed N (except
when N is a multiple of 3, for which she shows that Condition N-C always
fails®), there will only be finitely many exceptional numbers p for which the
auxiliary @ = 2Np + 1 will fail to satisfy Condition N-C (only primes of the
form § = 2Np + 1 can possibly satisfy the N-C condition”?). Much of her
manuscript is devoted to supporting this claim; while not carried to fruition,
Germain’s insight was vindicated much later when proven by E. Wendt in
1894 [Di, Ri, We].1?

Establishing Condition N-C for each N, and an induction on N

In order to establish Condition N-C for various N and p, Germain engages
in extensive analysis over many pages of the general consequences of nonzero
consecutive p-th power residues modulo a prime # = 2Np + 1 (N never a
multiple of 3). Her analysis actually encompasses all natural numbers for
p, not just primes. This is important in relation to the form of 6, since
she intends to carry out a mathematical induction on N, and eventually
explains in detail her ideas about how the induction should go. She employs
throughout the notion and notation of congruences introduced by Gauss, and
utilizes to great effect a keen understanding that the 2/Np multiplicative units
mod 6 are cyclic, generated by a primitive 2Np-th root of unity, enabling
her to engage in detailed analyses of the relative placement of the nonzero
p-th powers (i.e., the 2/N-th roots of 1) amongst the residues. She is acutely

8See [Ri, p. 127].

9See [Ri, p. 124].

Y0 Germain’s aim follows immediately from Wendt’s recasting of the condition in terms
of a circulant determinant depending on N. Condition N-C fails to hold for 6 only if
p divides the determinant, which is nonzero for all N not divisible by 3. There is no
indication that Wendt was aware of Germain’s work.
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aware that subgroups of the group of units are also cyclic, and of their
orders and interrelationships, and uses this in a detailed way. Throughout
her analyses she deduces that in may instances the existence of nonzero
consecutive p-th power residues would ultimately force 2 to be a p-th power
mod 6, and she therefore repeatedly concludes that Condition N-C holds
under the hypothesis that we will call

Condition 2-N-p (2 is Not a p-th power). The number 2 is not a p-th
power residue, modulo 6.

Notice that this hypothesis is always a necessary condition for Condition
N-C to hold, since if 2 is a p-th power, then obviously 1 and 2 are nonzero
consecutive p-th powers; so making this assumption is no restriction, and
Germain is simply exploring whether 2-N-p is also sufficient to ensure N-C.

Always assuming this hypothesis, which we shall discuss later, and also
the always necessary condition that 3 t N, Germain’s analysis initially shows
that if there exist two nonzero consecutive p-th power residues, then by
inverting them, or subtracting them from —1, or iterating combinations of
these transformations, she can obtain more pairs of nonzero consecutive p-th
power residues.!!

Germain proves that, under her constant assumption that 2 is not a p-th
power residue modulo 8, this transformation process will produce at least 6
completely disjoint such pairs, i.e., involving at least 12 actual p-th power
residues. Therefore since there are precisely 2N nonzero p-th power residues
modulo 6, she instantly proves Condition N-C for all auxiliary primes 6 with
N =1,2,4,5 as long as p satisfies Condition 2-N-p. Germain continues with
more detailed analysis of these permuted pairs of consecutive p-th power
residues (still assuming Condition 2-N-p) to verify Condition N-C for N =7
(excluding p = 2) and N = 8 (here she begins to use inductive information
for earlier values of N).

At this point Germain explains her general plan to continue the method
of analysis to higher N, and how she would use induction on N for all
p simultaneously. In a nutshell, she argues that the existence of nonzero
consecutive p-th power residues would have to result in a pair of such, =,

1Tn fact these transformations are permuting the pairs of consecutive residues according
to an underlying group with six elements, which we shall discuss later. Germain even
notes, when explaining the situation in her letter to Gauss [Gel], that from any one of
the six pairs, her transformations will reproduce the five others. This approaches the
existence of inverses in a group, and Germain’s phenomenon, if it had become known,
could have served as one of several important examples in the early nineteenth century
that stimulated the development of the group concept.

15



x + 1, for which z is (congruent to) an odd power (necessarily less than 2NV)
of x + 1. She claims that one must then analyze cases of expansions of the
binomial, depending on the value of N, to arrive at the desired contradiction,
and she carries out a complete detailed calculation for N = 10 (excluding
p = 2,3) as a specific “example” of how she says the induction will work in
general.

We have found it quite difficult to understand fully this part of the
manuscript. Germain’s claims may in fact hold, but we have not managed
to verify them completely from what she says. We have difficulty with an
aspect of her argument for N = 7, with her explanation of exactly how her
mathematical induction will proceed, and with an aspect of her explanation
of how in general a pair x, x4+ 1 with the property claimed above is ensured.
Finally, Germain’s example calculation for NV = 10 is much more ad hoc than
one would like as an illustration of how things would go in a mathematical
induction on N. Nonetheless, her instincts here were correct, as proven by
Wendt.

The interplay between N and p

But lest the reader think that proving N-C for all NV, each with finitely many
excepted p, would immediately solve the Fermat problem, note that what
is actually needed, for each fixed prime p, is that Condition N-C holds for
infinitely many NV, not the other way around. For instance, perhaps p = 3
must be excluded from the validation of Condition N-C for all sufficiently
large N, in which case Germain’s method would not prove Fermat’s Last
Theorem for p = 3. Germain makes it clear early in the manuscript that she
recognizes this issue, that her results do not completely resolve it, and that
she has not proved Fermat’s claim for a single predetermined exponent. But
she also states that she strongly believes that the needed requirements do
in fact hold, and that her results for N < 10 strongly support this. Indeed,
note that so far the only odd prime excluded in any verifications was p = 3
for N = 10 (recall, though, that we have not yet examined Condition 2-N-
p, which must also hold in all her arguments, and which will also exclude
certain combinations of N and p when it fails).

Germain’s final comment on this issue states first that as one proceeds
to ever higher values of N, there is always no more than a “very small
number” of values of p for which Condition N-C fails. If indeed this, the
very crux of the whole approach, were the case, in particular if the number
of such excluded p were bounded uniformly, say by K, for all N, which
is what she in effect claims, then a little reflection reveals that indeed her
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method would have proven Fermat’s Last Theorem for all but K values of
p, although one would not necessarily know which values. She herself states
that this would prove the theorem for infinitely many p, even though not for
a single predetermined value of p. It is in this sense that Germain believed
her method could prove infinitely many instances of Fermat’s Last Theorem.

Verifying Condition 2-N-p

We conclude our exposition of Germain’s grand plan in Manuscript A with
her analysis of Condition 2-N-p, which was required throughout all her argu-
ments above. She points out that for 2 to be a p-th power mod § = 2Np+1
means that 22V = 1 (mod ) (since the multiplicative structure is cyclic).
Clearly for fixed N this can only occur for finitely many p, and she easily
determines these exceptional cases through N = 10, simply by calculating
and factoring each 22V — 1 by hand, and observing whether any of the prime
factors are of the form 2Np + 1 for any natural number p. To illustrate, for
N =7 she writes that

211 _1=3.43-127=3-(14-3+1)-(14-9+1),

so that p = 3, 9 are the only values for which Condition 2-N-p fails for this
N.

Germain then presents a summary table of all her results verifying Con-
dition N-C for auxiliary primes 6 using relevant values of N < 10 and primes
2 < p < 100, and says that it can easily be extended further.'> The results
in the table are impressive. Aside from the case of 6 = 43 = 14 -3 + 1 just
illustrated, the only other auxiliary primes in the range of her table which
must be omitted are § = 31 = 10-3+1, which she determines fails Condition
2-N-p, and 6 = 61 = 20 - 3 + 1, which was an exception in her N-C analysis
for N = 10. In fact each N in her table ends up having at least five primes
p with 2 < p < 100 for which § = 2Np + 1 is also prime and satisfies the
N-C condition.

While the number of p requiring exclusion for Condition 2-N-p may ap-
pear “small” for each IV, there seems no obvious reason why it should nec-
essarily be uniformly bounded for all N; Germain does not discuss this issue
specifically for Condition 2-N-p. As indicated above, without such a bound it

12The table is slightly flawed in that she includes § = 43 = 14 -3+ 1 for N = 7 despite
the excluding calculation we just illustrated, which Germain herself had just written out;
it thus seems that the manuscript may have simple errors, suggesting it may sadly never
have received good criticism from another mathematician.
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is not clear that this method could actually prove any instances of Fermat’s
theorem.

Results of the grand plan

To summarize, Germain had a sophisticated and highly developed grand
plan for proving Fermat’s Last Theorem for infinitely many exponents. It
relied heavily on expertise with the multiplicative structure in a cyclic prime
field and a set (group) of transformations of consecutive p-th powers, and it
involved many clever ideas which we have not laid out here in detail. She
carried her program out in an impressive range of values for the necessary
auxiliary primes, believed that the evidence indicated one could push it fur-
ther using mathematical induction by her methods, and she was optimistic
that by doing so it would prove Fermat’s Last Theorem for infinitely many
prime exponents. In hindsight we know that, promising as it may have
seemed at the time, the program can never be carried to completion.

2.2 Did Germain ever know her grand plan cannot succeed?

To answer this question we examine the published record, correspondence
with Gauss, and a letter from Germain to Legendre.

Libri claims that such a plan cannot work

Published indication that Germain’s method can not succeed in proving Fer-
mat’s Last Theorem came in work of Guglielmo (Guillaume) Libri, a rising
mathematical star in the 1820s. It is a bit hard to track and compare the
content of his relevant works and their dates, partly because Libri presented
or published several different works all with the same title, but some of these
were also multiply published. Our interest is in the content of just two dif-
ferent works. In 1829 Libri published a set of his own memoirs [Lil]. One of
these is titled Mémoire sur la théorie des nombres, republished later word
for word as three papers in Crelle’s Journal [Li]. The memoir published in
1829 ends by applying Libri’s study of the number of solutions of various
congruence equations to the situation of Fermat’s Last Theorem. Among
other things, Libri shows that for exponents 3 and 4, there can be at most
finitely many auxiliary primes satisfying the N-C condition. And he claims
that his methods will clearly show the same for all higher exponents. Libri
explicitly notes that his result proves that the attempts of others to prove
Fermat’s Last Theorem by finding infinitely many such auxiliaries are in
vain.
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Libri also writes in his 1829 memoir that all the results he obtains were
already presented in two earlier memoirs of 1823 and 1825 to the Academy
of Sciences in Paris. Libri’s 1825 presentation to the Academy was also
published, in 1833/1838 [Li3|, confusingly with the same title as the 1829
memoir. This presumably earlier document'? is quite similar to the publi-
cation of 1829, in that it develops methods for determining the number of
solutions to quite general congruence equations, including that of the N-C
condition, but it does not explicitly work out the details for the N-C condi-
tion applying to Fermat’s Last Theorem, as did the 1829 memoir. Thus it
seems that close followers of the Academy should have been aware by 1825
that Libri’s work would doom the auxiliary prime approach to Fermat’s Last
Theorem, but it is hard to pin down exact dates. Much later, P. Pepin [Pel,
pp. 318-319][Pe2] and A.-E. Pellet [Pe, p. 93] (see [Di][Ri, pp. 292-293])
confirmed all of Libri’s claims, and L. E. Dickson [Dil, Di2] gave specific
bounds. For completeness, we mention that Libri also published a memoir
on number theory in 1820, his very first publication, with the title Memo-
ria Sopra La Teoria Dei Numeri [Li2], but it was much shorter and does
not contain the same type of study or results on the number of solutions to
congruence equations.

What Germain knew and when: Gauss, Legendre, and Libri

So did Germain ever know from Libri or otherwise that her grand plan to
prove Fermat’s Last Theorem could not work, and if so, when?

We know that in 1819 she was enthusiastic in her letter to Gauss about
her method for proving Fermat’s Last Theorem, based on extensive work ex-
emplified by Manuscript A.' In it Germain details several specific examples
of her results on the N-C condition that match perfectly with Manuscript
A, and which she explicitly explains have been extracted from an already
much older note (“d’une note dejé ancienne”) that she has not had the time

130ne can wonder when the document first published in 1833, but based on Libri’s 1825
Academy presentation, was really written or finalized. Remarks he makes in it suggest,
though, that it was essentially his 1825 presentation.

" Near the end she even expresses to Gauss how a brand new work by L. Poinsot [Po]
will help her further her efforts to confirm the N-C condition by giving a new way of
working with the p-th powers mod § = 2Np + 1. She interpets them as the solutions of
the binomial equation of degree 2N, i.e., of 22 —1 = 0. Poinsot’s memoir takes the point
of view that the mod 0 solutions of this equation can be obtained by first considering the
equation over the complex numbers, where much was already known about the complex
2N-th roots of unity, and then considering these roots as mod p integers by replacing the
complex number v/—1 by an integer whose square yields —1 mod p.
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to recheck. In fact everything in the extensive letter to Gauss matches the
details of Manuscript A. This suggests that Manuscript A is likely the older
note in question, and considerably predates her 1819 letter to Gauss. Thus
1819 is our lower bound for the answer to our question. We also know that
by 1823 Legendre had written his memoir crediting Germain with her the-
orem, but without even mentioning the method of finding infinitely many
auxiliary primes that Germain had pioneered to try to prove Fermat’s Last
Theorem. We know, too, that Germain wrote notes in 1822 on Libri’s 1820
memoir,'® but this first memoir did not study modular equations, hence was
not relevant for the N-C condition. It seems likely that she came to know
of Libri’s claims dooming her method, based either on his presentations to
the Academy in 1823/25 or the later memoir published in 1829, particularly
because Germain and Libri had met and were personal friends from 1825,
as well as frequent correspondents. It thus seems probable that sometime
between 1819 and 1823 or 1825 Germain would have come to realize that
her grand plan could not work.

Germain proves to Legendre that the plan fails for p =3

In fact, though, we do not need to speculate about Germain’s knowledge of
Libri’s work in order to answer our primary question, since we have found
separate evidence of Germain’s realization that her method of proving Fer-
mat’s Last Theorem cannot succeed, at least not in all cases. While Man-
uscript A and her letter of 1819 to Gauss evince her belief that for every
prime p > 2, there will be infinitely many auxiliary primes satisfying the
N-C condition, there is an undated letter to Legendre in which Germain
actually proves the opposite for p = 3 [Ge4]. Although we have found noth-
ing else in the way of correspondence between Legendre and Germain on
Fermat’s Last Theorem, we are fortunate to know of this one critical letter,
held in the Samuel Ward papers of the New York Public Library.!

Sophie Germain began her three page letter by thanking Legendre for
“telling” her “yesterday” that one can prove that all numbers of the form
6a+1 larger than 13 have a pair of consecutive (nonzero) cubic residues. This
amounts to saying that for p = 3, no auxiliary primes of the form § = 2Np+1

" Germain’s three pages of notes [Ge5, cass. 7, ins. 56][Ce, p. 233], while not directly
about Fermat’s Last Theorem, do indicate an interest in modular solutions of roots of unity
equations, which is what encompasses the distribution of p-th powers modulo 8. Compare
this with what she wrote to Gauss about Poinsot’s work, discussed in the previous footnote.

16The Samuel Ward papers include “letters by famous mathematicians and scientists
acquired by Ward with his purchase of the library of mathematician A. M. Legendre.” We
thank Louis Bucciarelli for providing us with this lead.
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satisfy the N-C condition beyond N = 1,2. At first sight this claim is
perplexing, since it seems to contradict Germain’s success in Manuscript A
at proving Condition N-C for almost all odd primes p whenever N = 1, 2,
4,5, 7, 8, 10. However, the reader may check that for p = 3 her results
in Manuscript A actually only apply for N = 1 and 2, once one takes into
account the exceptions, i.e., when either 6 is not prime, or Condition 2-N-p
fails, or when she specifically excluded p = 3 for N = 10. So the claim
in Germain’s letter to Legendre is actually conceivably true, that there are
only two valid auxiliary primes for p = 3. Germain immediately writes a
proof for him. We will elucidate her proof here in our own words, in order to
show the mathematical flavor and level of her thinking, but we will expand
substantially on her highly condensed explanation in the letter, since it is
hard to follow otherwise.

Germain’s Letter to Legendre. For any prime 6 of the form 6a+ 1, with
0 > 13, there are (nonzero) consecutive cubic residues. In other words, the
N-C' condition fails for 6 = 2Np + 1 when p = 3 and N > 2, so the only
valid auziliary primes for p = 3 for the N-C condition are 8 =7 and 13.

Proof. We consider only the nonzero residues 1,...,6a. Suppose that N-C
is true, i.e., there are no consecutive pairs of cubic residues (c.r.) amongst
these, and suppose further that there are also no pairs of c.r. whose difference
is 2. (Note something important here. We mean literally residues, not
congruence classes, with this assumption, since obviously 1 and —1 are cubic
congruence classes whose difference is 2. But they are not both actual
residues, and their residues don’t have difference 2. So they don’t violate
our assumption.) There are 2a c.r. distributed somehow amongst the 6a
residues, and without any differences of 1 or 2 allowed, according to what
we have assumed. Therefore to separate adequately these 2a residues from
each other there must be 2a — 1 gaps containing the 4a nonzero non-cubic
residues (n.c.r.), each gap containing at least 2 n.c.r. Since each of these
2a — 1 gaps has at least 2 n.c.r., utilizing 4a — 2 n.c.r., this leaves flexibility
for allocating only 2 remaining of the 4a n.c.r. This means that all the gaps
must contain exactly 2 n.c.r. except for either a single gap with 4 n.c.r., or
two gaps with 3 n.c.r. in each.

We already know of the specific c.r. 1 and 8 (recall § = 6a+1 > 13). and
we know that 2 and 3 cannot be c.r. by our two assumptions. If 4 were a
c.r., then so would 8/4 = 2 (alternatively, 8 — 4 = 4 would violate N-C), so 4
is also not a c.r. Now Germain writes down a pattern for the sequence of c.r.
that we do not understand, and claims it is obviously absurd for # > 13.17

"Germain writes that the list is (presumable omitting those at the ends) 1+ 4, 5 + 3,
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We can easily arrive at a pattern and an absurdity ourselves. From what
Germain already has above, the c.r. sequence must clearly be the list 1, 5,
8, 11,...,6a — 10, 6a — 7, 6a — 4, 6a, since the c.r. are symmetrically placed
via negation modulo § = 6a+ 1, and we know the gap sizes. Notice that the
two exceptional gaps must be of 3 each, located at the beginning and end.
To see this is absurd, for § > 6-5+41 = 31, consider the c.r. 33 = 27. Notice
it contradicts the pattern listed above, since it is less than 6a > 30, but is
not congruent to 2 modulo 3, as are all the lesser residues in the list except
1. Finally, the only other prime 6 > 13 is 19, for which 4% = 64 has residue
7, which is not in the list.

So one of the two initial assumptions must be false. If N-C fails, we are
done. So consider the failure of the other assumption, that there are no pairs
of c.r. whose difference is 2. Let then r and r’ be c.r. with r — 7’ = 2. Let
x by a primitive root of unity modulo 0, i.e., a generator of the cyclic group
of multiplicative units represented by the nonzero prime residues. We must
have 2 = 23/*1 i.e., the power of x representing 2 cannot be divisible by 3,
since 2 is not a c.r. Now consider r + /. (We claim that r + r’ # 0, since if
it were, then 2 = r — ¢/ = r — (—r) = 2r, yielding » = 1, and hence r = 1,
which violates » — 7' = 2. Here it is critical to recall that we are dealing
with actual residues 7 and r’, both nonnegative numbers less than 6a + 1,
i.e., the requirements » = 1 and » — 7’ = 2 are incompatible, since there are
no 0 < r,r7’ < 6a + 1 for which r = 1 and r — v’ = 2; this is related to the
observation at the beginning that the congruence classes 1 and —1 are not
violating our initial assumption.)

Since r + 7' # 0, it is a unit, and thus must be congruent to some
power x. If m were divisible by 3, then the congruence r + 7' = 2™ would
provide a difference of c.r. yielding another c.r., which violates N-C after
division by the latter. So we have r + ' = z39%1, Now the sign in 3f & 1
must agree with that in 3g & 1, since if not, say r + ' = 239F!, then r2 —
2 = (r—1') (r+1') = 2239F! = g3/Fly39F1 — 33(/+9) again producing a
difference of c.r. equal to another c.r., a contradiction. Finally, we combine
r—r' = 3 with r + ¢ = 239 to obtain 2r = 237+ 4+ 239+ and
thus 3/l = 23+ 4 239+ becoming r = 1+ 239~ 7) | again contradicting
N-C. Thus the original assumption of Condition N-C must have been false.
Q.E.D.

Notice that Germain’s proof displays a rather advanced group-theoretic
view at the end. Indeed it is an impressive proof for one she tells Legendre
she developed overnight.

8+43,11+3,14+3,...,6a — 17, 6a — 4 [sic], 6a — 11, 6a — 8, 6a — 5.
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Probably these dramatic failures of Condition N-C for p = 3 greatly
sobered Germain’s previous enthusiasm for pursuing her grand plan any
further for other exponents. We mention in passing that, optimistic as
Germain was at one point about finding infinitely many auxiliary primes for
each p, not only is that hope dashed by Germain’s letter to Legendre, and
by Libri’s results, but even today it is not known whether, for an arbitrary
prime p, there is even one auxiliary prime 6 satisfying Condition N-C [Ri,
p. 301].

2.3 Comparing Germain’s grand plan with Legendre, Dick-
son, and recent results on Case 1

We know of no concrete evidence that anyone else ever pursued a grand plan
similar to Sophie Germain’s for proving Fermat’s Last Theorem, despite the
fact that Libri wrote of several (unnamed) mathematicians who attempted
this method. Germain’s extensive work on this approach appears to be
entirely, independently, and solely hers, despite the fact that others were
interested in establishing Condition N-C for different purposes.

Legendre’s methods for establishing Condition N-C

Why did Legendre not mention Germain’s full scale attack on Fermat’s Last
Theorem in his treatise of 18237 Whether because he was by that point
unconfident that it could work (as the letter from Germain suggests) or
whether he might have known even more certainly from Libri’s upcoming
work that it was unfeasible, we do not know. On the other hand, it certainly
seems unlikely that he could have been unaware of Germain’s extensive work
on it, given her letter to him about Condition N-C for cubic residues. Thus
in the end we cannot discern with any certainty why Legendre was silent in
print about Germain’s plan for proving Fermat’s Last Theorem.
Nonetheless, Legendre had two other reasons for wanting to establish
Condition N-C himself, and he develops N-C results in roughly the same
range for N and p as did Germain, albeit not mentioning hers. One of
his reasons was to verify Case 1 of Fermat’s Last Theorem for many prime
exponents, since, recall, Condition N-C for a single auxiliary prime is also one
of the hypotheses of Sophie Germain’s Theorem. Indeed, Legendre develops
results for N-C, and for the second hypothesis of her theorem, that enable
him to find a qualifying auxiliary prime for each odd exponent p < 197,
which extends the scope of the table he implicitly attributed to Germain.
Legendre goes on to use his N-C results for a second purpose as well, namely
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to show for a few small exponents that any solutions to the Fermat equation
would have to be very large indeed. We will discuss this additional use of
N-C in the next section.

Having said that Legendre obtained roughly similar N-C conclusions
as Germain, why do we claim that her approach to N-C verification itself
is entirely independent? This is because Germain’s method of analyzing
and proving the N-C condition, explained in brief above, is utterly unlike
Legendre’s. We illustrate this by quoting Legendre’s explanation [Le, §25]
of why Condition N-C is always satisfied for N = 2, i.e., for 8 = 4p + 1.
As we quote Legendre, we caution that even his notation is very different;
he uses n for the prime exponent that Germain, and we, call p. Legendre
writes

OXDXDXXDXDXIXDO

One can also prove that when one has § = 4n + 1, these two conditions are
also satisfied. In this case there are 4 residues r to deduce from the equation
r* — 1 =0, which divides into two others 72 — 1 =0, 72 + 1 = 0. The second,
from which one must deduce the number i, is easy to resolve!®; because one
knows that in the case at hand 6 may be put into the form a2 + b2, it suffices
therefore to determine p by the condition that a + by is divisible by 6; so that
upon omitting multiples of #, one can make ;2 = —1, and the four values of r
become r = 4 (1, ).

From this one sees that the condition 7/ = r + 1 can only be satisfied in the
case of = 2, so that one has # =5 and n = 1, which is excluded. ...

OXDXDXXIDXDXXDO

We largely leave it to the reader to understand Legendre’s reasoning
here. He does not use the congruence idea or notation that Germain had
adopted from Gauss, he focuses his attention on the roots of unity from
their defining equation, he makes no use of the 2-N-p condition, but he is
interested in the consequences of the linear form 4n 4 1 necessarily having
a certain quadratic form, although we do not see how it is germane to his
argument. In the next case, for N = 4 and 0 = 8n + 1, he again focuses
on the roots of unity equation, and claims that this time the prime 8n + 1
must have the quadratic form a? + 2b%, which then enters intimately into an
argument related to a decomposition of the roots of unity equation. Clearly
Legendre’s approach is completely unlike Germain’s. Recall that Germain

8From earlier in the treatise, we know that p here means a primitive fourth root of
unity, which will generate the four n-th powers.
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disposed of all the cases N = 1, 2, 4, 5 in one fell swoop with the first
application of her analysis of permuted placements of pairs of consecutive p-
th powers, whereas Legendre laboriously builds his analysis of 2N-th roots of
unity up one value at a time from N = 1. In short, Legendre focuses on the
p-th powers as 2IN-th roots of unity, one equation at a time, while Germain
does not, instead studying their permutations as p-th powers more generally
for what it indicates about their placement, and aiming for mathematical
induction on N.

Dickson rediscovers Germain’s permutation methods for Condi-
tion N-C

Many later mathematicians worked to extend verification of the N-C con-
dition for larger values of N.?20 Their aim was to prove Case 1 of Fermat’s
Last Theorem for more exponents by satisfying the hypotheses of Sophie
Germain’s Theorem. In particular, in 1908 L. E. Dickson published two
papers [Di, Di3, Di4] extending the range of verification for Condition N-C
to N < 74, and also 76 and 128 (each N excepting certain values for p, of
course), with which he was able to apply Sophie Germain’s theorem to prove
Case 1 for all p < 6,857. In light of the fact that Germain and Legendre
had completely different methods for verifying Condition N-C, one wonders
what approach was taken by Dickson.

Dickson comments directly that his method for managing many cases
together has “obvious advantages over the procedure of Legendre”. It is
then amazing to see that his method is based directly (albeit presumably
unbeknownst to him) on the same theoretical observation made by Sophie
Germain, that pairs of consecutive p-th powers are permuted by two trans-
formations of inversion and subtraction to produce six more. He recognizes
that these transformations form a group of order six, which he calls the
cross-ratio group (it consists of the transformations of the cross-ratio of four
numbers on the real projective line obtained by permuting its variables [Sti,
pp. 112-113]), and is isomorphic to the permutations on three symbols).

9Despite the apparently completely disjoint nature of the treatments by Germain and
Legendre of the N-C condition, it is quite curious that their writings have a common
mistake. The failure of N-C for p = 3 when N = 7 is overlooked in Legendre’s treatise,
while in Germain’s manuscript we have already noted above that while she explicitly
calculated the failure of 2-N-p (and thus of N-C) for this same combination, she then
nonetheless mistakenly listed it as valid for N-C in her table.

20Legendre went to N = 8 and Germain to N = 10, and actually to N = 11 in another
very much rougher manuscript draft [Ge2, pp. 209 (right)-214 (left), 216 (right)-218 (left)
220 (right)-226 (right)].
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Dickson observes that the general form of these transformations of an arbi-
trary p-th power are the roots of a sextic polynomial that must divide the
roots of unity polynomial for any N. This then forms the basis for much
of his analysis, and even the ad hoc portions have much the flavor of Ger-
main’s approach for N > 5. In sum, we see that Dickson’s approach to the
N-C condition more than three-quarters of a century later could have been
directly inspired by Germain’s, had hers not sat entirely unknown in her
manuscripts. Might not further progress by later mathematicians on Case 1
of Fermat’s Last Theorem have occurred decades earlier if Sophie Germain’s
approach to the nonconsecutivity condition had seen the light of day before
now?

Revival of a proof by induction on N

Finally, work on verifying the N-C condition has continued up to the close
of the twentieth century, largely with the aim of proving Case 1 using exten-
sions of Sophie Germain’s Theorem. By the middle of the nineteen eighties
results on the distribution of primes had been combined with extensions of
Germain’s theorem to prove Case 1 of Fermat’s Last Theorem for infinitely
many prime exponents [AH, Fo]. It is also inspiring that at least one even
more recent effort still harks back to what we have seen in Germain’s un-
published manuscripts. Recall that Germain explained her intent to prove
the N-C condition by induction on N. This is precisely what a recent paper
by David Ford and Vijay Jha does [FJ], using some modern methods and
computing power to prove by induction on N that Case 1 of Fermat’s Last
Theorem holds for any odd prime exponent p for which there is a prime
0 =2Np+1 with 31 N and N < 500.

2.4 Comparing Manuscripts A and D: Polishing for the prize
competition?

Manuscripts A and D, of the same title, are extremely similar, with identical
mathematical content and almost identical wording. Still, we will learn
interesting things by comparing them.

Manuscript D gives the impression of an almost finished exposition of
Germain’s work on Fermat’s Last Theorem, greatly polished in content and
wording over the much rougher additional manuscript we mentioned in sec-
tion 2. And it is perfectly readable. However, it is not yet physically beau-
tiful, since Germain was clearly still refining her wording as she wrote it. In
many places words are crossed out and she continues with different word-
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ing, or words are inserted between lines or in the margins to alter what has
already been written. There are also large parts of some pages left blank.
By contrast, Manuscript A appears beautiful and perfect. It is copied word
for word almost without exception from Manuscript D. It seems clear that
Manuscript A was written specifically to provide a visually perfected copy
of Manuscript D.

One aspect of Manuscript D is quite curious. Recall that Manuscript A
contains a table with all the values for auxiliary primes satisfying Condition
N-C for N <10 and 3 < p < 100. Germain explicitly introduces this table,
referring both ahead and back to it in the text, where it lies on page 17 of
20. Manuscript D says all these same things about the table, but where the
table should be there is instead simply a side of a sheet left blank. Thus
Germain refers repeatedly to a table that is missing in what she wrote. This
suggests that as Germain was writing Manuscript D, she knew she would
need to recopy it to make it perfect, so she didn’t bother writing out the
table at the time, saving the actual table for Manuscript A.

Our comparison between Manuscripts A and D highlights the perfection
of presentation Sophie Germain sought in producing Manuscript A. Is it
possible that she was preparing this manuscript for submission to the French
Academy prize competition on the Fermat problem, which ran from 1816 to
18207 We will discuss this further in our conclusion.

3 Large size of solutions

While German believed that her grand plan could prove Fermat’s Last The-
orem for infinitely many prime exponents, she recognized that it had not
yet done so even for a single exponent. She thus wrote that she wished at
least to show for specific exponents that any possible solutions to the Fermat
equation would have to be extremely large.

In the last four pages of Manuscript A, Germain provides a theorem
intended to accomplish this. She first recalls that any auxiliary prime sat-
isfying Condition N-C will have to divide one of the numbers z, y, z in the
Fermat equation, but observes that to produce significant lower bounds on
solutions this way, one would need to employ rather large auxiliary primes.
Then she says

“fortunately one can avoid such impediment by means of the
following theorem:”?,

2 - : PN .
! “heureusement on peut éviter un pareil embarras au moyen du théoréme suivant:”
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which we shall call

Theorem (Large Size of Solutions). “For the equation xP+yP = zP to be
satisfied in whole numbers, p being any [odd] prime number, it is necessary
that one of the numbers x+y, z—y, and z—x be a multiple of the (2p—1)"
power of the number p and of the p™ powers of all the prime numbers of the
form [0 =/Np+1, for which one has, at the same time, that one cannot find
two p™ power residues [mod 0] whose difference is one, and that p is not a
p'" power residue [mod 0] .7

(N.B: The theorem implicitly requires that at least one such 6 exists.)

It is this theorem to which Germain was undoubtedly referring when she
wrote to Gauss that any possible solutions would consist of numbers “whose
size frightens the imagination”. Early in Manuscript A she says that she
will apply the theorem for various values of p using her table. She mentions
here that even just for p = 5, the valid auxiliary primes § = 11, 41, 71, 101
show that any solution to the Fermat equation would require a number with
at least 39 decimal digits.

We will soon see that, as given, the proof of her Large Size theorem is
insufficient, and we will discuss approaches by Germain to remedy this, as
well as an approach by Legendre to large size of solutions. But we will also
see that Sophie Germain’s Theorem, the result she is actually known for
today, validly falls out of her proof.

3.1 Germain’s approach to large size solutions

Note that the two hypotheses of Germain’s Large Size theorem are, first,
the same N-C condition she already studied at length for her grand plan,
and second, what we will call

Condition p-N-p (p is Not a p-th power). p is not a p" power residue,
modulo 6.

We now present a direct English translation of Germain’s proof. The
proof implicitly begins with the fact that the N-C condition implies that one
of the numbers z,y, z has to be divisible by 8. We also provide additional
annotation, since Germain assumes the reader is already quite familiar with
many aspects of her equations.

22 “Pour que 1’équation =P +yP = 2P soit satisfaite en nombres entiers, p étant un nombre
premier quelconque; il faut que 'un des nombres x + y, z — y et z — x soit multiple de la
(2p—1)"*™¢ puissance du nombre p et des p'°™°® puissances de tous les nombres premiers de
la forme Np+ 1, pour lesquels, en méme tems [sic] que I'on ne peut trouver deux résidues

P puissances dont la difference soit 1’unité, p est non résidu puissance p'“™°¢.”
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OXDXDXXIXDXIXDO

Assuming the existence of a single number subject to the double condition, |
will prove first that the particular number z, y or z in the equation P + yP = 2P
which is a multiple of the assumed number [6], must necessarily also be a
multiple of the number p?.

Indeed, if the numbers x,y, z are [assumed to be] relatively prime, then the
[pairs of| numbers

z+y and 2Pl — 2P 2y 4 2P 3y2 — o434 ete
z—1vy and 2P P2y 4 P32 4 ap—hB L et
z —x and Zp_l + zp—2x + Zp_3£L‘2 + Zp_4.’L‘3 + etc.

can have no common divisors other than p.2?
ODDDDDDDO

For the first pair, this last claim can be seen as follows (and similarly for
the other pairs). Denote the right hand expression on the first line by p(x, y).
If some prime ¢ other than p divides both numbers, then y = —z (mod q),
yielding ¢(z,y) = prP~! (mod ¢). Then z and = + y are both divisible by
q, contradicting the assumption that x and y are relatively prime. This
excludes all primes other than p as potential common divisors of x + y and
e(z,y).

OXDXDXXXDXIXDO

If, therefore, the three numbers z,y, and z were all prime to p, then one would

have, letting z = Ir, = hn, y = vm:*
r+y=1" e T Tl e Ve R T (1)
z—y=~hP P P2y 4 P32 4 B L ete =P (2)
z—x =1 P P2y 4 P32 4 3 4 ete =mP. (3)

23 “En supposant lexistence d’un seul des nombres assujettés a cette double condition,
je prouverai d’abord que celui des nombres , y et z qui dans I’équation z? + y? = 2P sera
multiple du nombre supposé, devra necessairement étre en méme tems [sic] multiple du
nombre p?.

“En effet lorsque z, y et z sont premiers entr’eux, les nombres

z+y et Pl — gP 72y 4 2P 3y — 2P y8 4 ete

z—y et 2P P2y P32 4 2P L et
z—x et 2P 4 2P 2 4 P30 4 PS4 ete

ne peuvent avoir d’autres diviseurs communs que le nombre p.”
24 4Gj on voulait donc que les trois nombres z, y, et z fussent tous premiers a p on aurait,
en fesant z = lr, x = hn, y = vm:
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OXDXDXXIXDXIXDO

Equations like these were given by Barlow around 1810, and stated ap-
parently independently by Abel in 1823 [Ri].

One can derive these equations as follows. In the first line, the assump-
tion that x,y, z are each relatively prime to p, along with the Fermat equa-
tion, forces x + y and ¢(z,y) to be relatively prime. It is this assumption
that Germain is going to contradict. Since the product of z +y and ¢(z,y)
is equal to zP, each of them must therefore be a pth power, as she writes.
The other lines have parallel proofs.

Divisibility by p
OXDDADXDIXDDO

Without loss of generality | assume that it is the number z which is a multiple
of the prime number [] of the form 2Np + 1, assumed to exist. One therefore
has that I? + h? + vP = 0 (mod 2Np + 1). And since by hypothesis there
cannot be, for this modulus, two pth power residues whose difference is 1, it
will be necessary that it is [ and not 7, which has this modulus as a factor. Since
r+y =0 (mod 2Np + 1), one concludes that pzP~! = rP (mod 2Np + 1),
that is to say, because z is a pth power residue, p will also be a pth power
residue, contrary to hypothesis; thus the number z must be a multiple of p.2°

OXDXDXXIXDXIXDO

The N-C condition and the congruence P + h?” + vP = 0 (mod 6§ =
2Np+ 1) imply that either I, h, or v is divisible by 6. If one of h or v were,
then x or y would also be divisible by 6, contradicting the assumption that

z+y=1" 2P Py b 2Py — PR 4 ete =

z—y=h? P4 2Py 4 2P 4 2P 4 ete =P

, p—1 —2 p—3 2 4 3
z—x =" TP+ P 4 2P + ete = mP

25 “Pour fixer les idées je supposerai que c’est le nombre z qui est multiple du nombre
premier de la forme 2Np + 1 dont on a supposé 'existence, on aura alors [ +h? +0vP =0
(mod 2Np + 1); et puisque par hypothese il ne peut y avoir pour ce module deux résidus
puissances p'¢™° dont las difference soit 1'unité, il faudra que cesoit I et nonpar r qui ait
le méme module pour facteur. De z +y = 0 (mod 2Np + 1), on conclut pz?~! = ¢?
(mod 2Np + 1) c’est a dire, & cause de z résidu p'®™° puissance, p aussi résidu p'®™°
puissance, ce qui est contraire & I’hypothése, il faut donc que le nombre z soit multiple de
p.”
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x, y, z are relatively prime. This implies that [ is the number divisible by
6, and thus y = —x (mod 6). Substituting, we have p(z,y) = pzP~! = rP
(mod 0), as claimed. Furthermore, since z = 0 (mod #), we conclude from
z —x = vP that x is a pth power modulo 6. Therefore, p is also a pth power
modulo 0, a contradiction to the other hypothesis of the theorem.

Thus we have derived a contradiction to the assumption that x, y, z
are all prime to p, which indeed forces one of z, y, z to be a multiple
of p. But it is not clear yet why z, the number divisible by 6, has to be
the one; this uncertainty is indicative of a flaw we will shortly observe. In
order to continue the proof, Germain now in effect implicitly changes the
assumption on z to be that z is the number known to be divisible by p, but
not necessarily by 6, which in principle is fine, but must be kept very clear
by us. She now replaces the first pair of equations by a new pair, reflecting
this change. (The remaining equations still hold, since x and y must be
relatively prime to p.)

Sophie Germain’s Theorem as fallout

OXDXIXDXDXIXIXDO

Setting actually z = [rp, the only admissible assumption is that
r+y=1Pprt aP™b - aP2y P3PS petc=pr?. (1))

Because if, on the contrary, one were to assume that

zty=10p, 2P 2Py b ah Ty ey pete = pP P

9

then
(x + y)p_l — {a:p_l — P72y 4 2P 32 4 etc}

would be divisible by pP~!. Observe that in the equation 2z — x —y = hP + vP

the form of the right-hand side forces it to be divisible by p or p?. Consequently,

one sees that with the present assumptions z has to be a multiple of p?.26

26 “En prenant actuellement z = Irp, la seule supposition admissible est

p—3, 2

Pl P2y P

z+y=I1pP, x P4 4 ete = pr?,

car si on fesoit au contraire

z+y=1p, a? Tt — 2Py 4 2Py — 2P ete = pP P,

(z+y)" " = {a" " — PPy + 2P0y + et}
seroit divisible par p?~!, parconséquent si on observe que dans 1’équation 2z — x — y =
hP 4+ vP la forme du second membre veut qu’il soit premier a p, ou multiple de p® on verra

que, dans les suppositions presentes, z aussi doit étre multiple de p2.”
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OXDXDXXIXDXIXDO

To see Germain’s first assertion one can argue as follows. Since 2P =
P 4+ yP must be divisible by p, we need only show that ¢(x,y) is divisible
by exactly the first power of p. If we set x + y = s, then

)P 4 gP
PR Gl e g N £ P Y (R P B
5 1 p—2 p—1

Now observe that all but the last summand of the right-hand side is divisible
by p?, since p divides s = z +y = 2P + y? = 2P (mod p) by Fermat’s Little
Theorem, whereas the last summand is divisible by exactly p, since x is
relatively prime to p.

Finally, to see that this forces z to be divisible by p?, observe that the
equation 2z — x — y = h” + vP ensures that p divides hP 4+ vP. Furthermore,
p divides h 4+ v by Fermat’s Little Theorem, applied to h and v. Now note
that, since h = —v (mod p), it follows that h” = —vP (mod p?). Thus p?
divides z, since p? divides 2 4+ y by Germain’s new first pair of equations
above.

This much of her proof constitutes a valid demonstration of what we
have identified as Sophie Germain’s Theorem.

A mistake in the proof

OXDXIXDXDXIXIXDO

The only thing that remains to be proven is that all prime numbers of the
form [0 =]2Np + 1, which are subject to the same conditions as the number
whose existence has been assumed, are necessarily divisors?” of z.

In order to obtain this let us suppose that it is y, for example, and not z,
that has one of the numbers in question as a factor. Then for this modulus we
will have h? — [P = P, consequently v = 0, z = z, pzP~' = mP, that is to say,
p is a pth power residue contrary to the hypothesis.?®

OXDXDXXIDXDXDXDO

2TGermain wrote “multiples” here, but presumably meant “divisors”.

28«La seule chose qui reste a prouver est que tous les nombres premier de la forme
2Np + 1 qui sont assujettés aux mémes conditions que celui de la méme forme dont en a
supposé l'existence sont necessairement multiples [sic] de z.

“Pour y parvenir supposons que ce soit y, par example et non pas z, qui ait un des nom-
bres dont il s’agit pour facteur, nous aurons pour ce module h? — [P = v?, parconséquent
v=0, z=x, pzP~! =mP, cest a dire p residu puissance p'™° contre ’hypothese.”
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Here Germain makes a puzzling mistake. Rather than using the equation
(1), resulting from the p-divisibility assumption on z, she erroneously uses
the original equation (1) which required the assumption that all of z, y, z are
relatively prime to p. Subtracting (1) from (2) and comparing the result to
(3), she obtains the congruence h? — [P = vP (mod ), since y =0 (mod 6).
Although this congruence has been incorrectly obtained, we will follow how
she deduces from it the desired contradiction, partly because we wish to see
how the entire argument might be corrected. Since neither h nor [ can be
divisible by 6 (since neither x nor z are), the N-C Condition implies that

= 0 (mod ), hence z = z. Thus, pzP~t = mP follows from the right-
hand equation of (3). Further, z = h? follows from (2), since y = 0, and,
finally, this allows the expression of p as the residue of a p-th power, which
contradicts the p-N-p Condition.

Except for the mistake noted, the proof of Germain’s theorem is com-
plete. If instead the correct new equation (1) had been used, then in place
of the N-C Condition, the argument as written would need a condition anal-
ogous to N-C, but different, for the congruence

hP — [PpP~l = P

resulting from subtracting (1’) from (2) instead of (1) from (2). That is, we
could require the following additional hypothesis:

Condition N-p~! (No p~! differences). There are no two nonzero pth-
power residues that differ by p~1 (equivalently, by —2N ) modulo 6.

Clearly, adding this condition as an additional hypothesis would make
the proof of the theorem valid.

Germain’s remedy?

Did Germain ever realize this problem, and attempt to correct it? To the
left of the very well defined manuscript margin, at the beginning of the
paragraph containing the error, are written two words in much smaller letters
and a thicker pen. These words are either “voyez errata” or “voyez erratu”.?
This is one of only four places in Manuscript A where marginal notes mar
its visual perfection. None of the content of these appears in Manuscript

D, from which Manuscript A was meticulously copied. So Germain saw the

29This is a good example of the challenge of original manuscripts, since it took many
years before the authors could decipher these handwritten words, and therefore knew to
look for an errata.
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error in Manuscript A, but probably later, and wrote an errata about it.
Where is the errata?

Most remarkably, not far away in the same archive of her papers, tucked
apparently randomly in between sheets of the very much rougher draft of
Manuscripts A and D mentioned in section 2, we find two sheets [Ge2,
pp. 214 (right), 215 (left)] clearly titled “errata” or “erratu” in the same
writing style as the marginal comment.

The moment one starts reading these sheets, it is clear that they address
precisely the error Germain made. After writing the corrected equations (1'),
(2), (3) (in fact she refines them even more, incorporating the p? divisibility
she just correctly deduced) Germain notes that it is therefore a congruence
of the altered form

Pp?P~L L pP P =0

that should hopefully lead to a contradiction. It is not hard to see that
the N-p~! and p-N-p conditions will suffice for this, but Germain observes
right away that a congruence nullifying the N-p~! condition in fact exists
for the very simplest case of interest to her, namely p =5 and N = 1, since
1 and —1 are both 5-th powers, and they differ by 2N = 2.30 Germain then
wisely embarks on an effort to prove her claim by other means, not rely-
ing on assuming the N-p~! condition. She develops arguments and claims
based on knowledge of quadratic forms and quadratic reciprocity, but we
find these hard to follow and have not been able fully to understand her
efforts, including various marginal comments on these two sheets that we
cannot fully decipher. There is more work to be done understanding her
mathematical approach here. In the end it seems that Germain’s efforts
may be inconclusive.

Verifying Condition p-N-p: Germain’s theoretical approach

We return now from Germain’s errata to consider the end of Manuscript
A. Germain follows her Large Size of Solutions theorem with a method for
finding auxiliary primes 6 of the form 2Np + 1 satisfying the two conditions
(N-C and p-N-p) required for applying the theorem. Even though we now
realize that her applications of the Large Size theorem are unjustified, since
she did not succeed in providing a correct proof of the theorem, we will
describe her methods for verifying its hypotheses, in order to show their

30Tn fact the reader may check in various examples for small numbers that the N-p~!

condition seems to hold rather infrequently compared with the N-C condition, so simply
assuming the N-p~! condition as a hypothesis makes a true theorem, but perhaps not a
very useful one.
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skill, their application to Sophie Germain’s theorem, and to compare them
with the work of others.

Earlier in the manuscript Germain has already shown her methods for
verifying Condition N-C for her grand plan. She now focuses on verifying
Condition p-N-p, with application in the same range as before, i.e., for aux-
iliary primes 8 = 2Np + 1 using relevant values of N < 10 and odd primes
p < 100.

Germain first points out that since 8 = 2Np+1, therefore p will be a p-th
power modulo @ if an only if 2V is also, and thus, due to the cyclic nature
of the multiplicative units modulo 6, precisely if (2N )2N — 1 is divisible by
0. Yet before doing any calculations of this sort, she obviates much effort
by stating another theoretical result: For N of the form 2%p® in which a + 1
and b+ 1 are prime to p, she claims that p cannot be a p-th power modulo 6
provided 2 is not a p-th power modulo 6. Of course the latter is a condition
(2-N-p) she already studied in detail earlier for use in her N-C analyses.
Indeed the claim follows because 2°T!p**!t = 2Np = (—1)”, which shows
that 2 and p must be p-th powers together (although the hypothesis on b
is not necessary for just the implication she wishes to conclude). Germain
points out that this result immediately covers N = 1,2,4,8 for all p. In
fact, there is in these cases no need for Germain even to check the 2-N-p
condition, since she already earlier verified N-C for these values of N, and
2-N-p follows from N-C. Germain easily continues to analyze N = 5,7, 10 for
Condition p-N-p by factoring (2N )2N —1 and looking for prime factors of the
form 2Np—+ 1. Astonishingly, by this method Germain deduces that there is
not a single failure of Condition p-N-p for the auxiliary primes § = 2Np+ 1
in her entire previously drawn table of values satisfying Condition N-C.

Germain ends Manuscript A by drawing conclusions on the minimum
size of solutions to Fermat equations for 2 < p < 100 using the values for 0
in her table. Almost the most modest is her conclusion for p = 5. Since her
techniques have verified that the auxiliaries 11, 41, 71, 101 all satisfy both
Conditions N-C and p-N-p, Germain’s Large Size theorem (if it were true)
ensures that if % + 3® = 25 were true in positive numbers, then one of the
numbers = + vy, z — y, 2 — « must be divisible by 5°11°41°715101°, which
Germain notes has at least 39 decimal digits.
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3.2 Comparing Germain on Condition p-N-p and Large Size
with Legendre, Wendt, Dickson, Vandiver

Tables of residues for applying Sophie Germain’s Theorem

Legendre’s footnote credits Germain for Sophie Germain’s Theorem and for
applying it to prove Case 1 for odd primes p < 100 [Le|. For the application
he exhibits a table providing, for each p, a single auxiliary prime satisfying
both conditions N-C and p-N-p, based on examination of a raw numerical
listing of all its p-th power residues. Thus he leaves the impression that
Germain verified that her theorem was applicable for each p < 100 by brute
force residue computation with a single auxiliary. In fact, there is even such
a residue table to be found in Germain’s papers [Ge2, p. 151 left], that gives
lists of p-th power residues closely matching Legendre’s table.?! Legendre’s
table could thus easily have been made from hers. This, however, is not the
end of the story, contrary to the impression received from Legendre.

Theoretical approaches to Condition p-N-p

Both Legendre and Germain analyze theoretically the validity of Condition
p-N-p as well as that of N-C for a range of values of N and p, even though, as
with Germain’s grand plan for proving Fermat’s Last Theorem via Condition
N-C, Legendre never indicates her efforts at proving large size for solutions
by finding multiple auxiliary primes satisfying both Conditions N-C and p-
N-p. Moreover, since all Legendre’s work at verifying N-C and p-N-p comes
after the footnote, he is mute about Germain developing techniques for
verifying either condition. Rather, the clear impression his treatise leaves
the reader is that Sophie Germain’s Theorem and the brute force table are
hers, while all the techniques for verifying Conditions N-C and p-N-p are his
alone.

As we have seen, though, Germain qualifies auxiliaries to satisfy both
N-C and p-N-p entirely by theoretical analyses, and her table in Manuscript
A has no brute force listing of residues. In fact she developed general tech-
niques for everything, with very little brute force computation evident, and

31There are a couple of small differences between Legendre’s table of residues and the
one we find in Germain’s papers.

Germain states that she will not list the residues in the cases when N < 2 in the
auxiliary prime, suggesting that she already knew that such auxiliary primes are always
valid.

And while Germain, like Legendre, generally lists for each p the residues for only the
single smallest auxiliary prime valid for both N-C and p-N-p, in the case of p = 5 she lists
the residues for several of the auxiliaries that she validated in Manuscript A.
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was very interested in verifying her conditions for many combinations of N
and p, not just one auxiliary for each p. In short, the nature of Legendre’s
credit to Germain for proving Case 1 for p < 100 leaves totally invisible and
unappreciated her much broader theoretical work that we have uncovered
in Manuscript A.

We should therefore investigate, as we did earlier for Condition N-C, how
Legendre’s attempts at verifying Condition p-N-p compare with Germain’s,
to see if they are independent.

Legendre on Condition p-N-p

Legendre’s approach to verifying Condition p-N-p for successive values of
N is at first rather ad hoc, then based on the criterion whether 8 divides
p*N —1, slowly evolving to the equivalent divisibility of (2N)*" — 1 instead,
and appeals to his Théorie des Nombres for finding divisors of numbers of
certain forms. Unlike Germain’s methods, there is no recognition that many
N of the form 2%p® are amenable to appeal to Condition 2-N-p. Suffice it to
say that, as for Condition N-C, Legendre’s approaches and Germain’s take
different tacks, with Germain starting with theoretical transformations that
make verification easier, even though in the end they both verify Condition
p-N-p for roughly the same ranges of N and p. There are aspects with both
the N-C and p-N-p analyses where Germain goes further than Legendre with
values of NV and p, and vice versa.

Even their choices of symbols and notation are utterly different. Legen-
dre never uses the congruence notation that Gauss had introduced a quarter
century before, while Germain is fluent with it. Legendre quotes and relies
on various results and viewpoints from the second edition of his Théorie
des Nombres, and never considers Condition 2-N-p either for N-C or p-N-p
analysis, whereas it forms a linchpin in Germain’s approach to both. Ger-
main rarely refers to Legendre’s book or its results, but uses her implicit
and intimate understanding of the group of units in the prime field, and its
subgroups.

We are left surprised and perplexed by the lack of overlap in mathe-
matical approach between Germain’s Manuscript A and Legendre’s treatise,
even though the two are coming to the same conclusions page after page.
There is nothing in the two manuscripts that would make one think they
had communicated, except Legendre’s footnote crediting Germain with the
theorem that today bears her name. It is as though Legendre never saw
Germain’s Manuscript A, a thought we shall return to below. Four factors
leave us greatly perplexed at this disparity. First, years earlier Legendre had
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given Germain his strong mentorship during the work on elasticity theory
that earned her a prize of the French Academy. Second, Legendre’s own
research on Fermat’s Last Theorem was contemporaneous with Germain’s.
Third, Germain’s letter to Gauss about the failure of N-C for p = 3 suggests
detailed interaction. Fourth, we shall discuss later that Legendre’s credit
to Germain does match quite well with her Manuscript B. How could they
not have been in close contact and sharing their results and methods? In
the end, at the very least we can conclude that each did much independent
work, and should receive separate credit for all the differing techniques they
developed for analyzing and verifying the N-C and p-N-p conditions.

Wendt, Dickson, and Vandiver rediscover Germain’s theoretical
approach to Condition p-N-p

Later mathematicians were as unaware of Germain’s theoretical analysis
of Condition p-N-p as they were of her approach to Condition N-C, again
because Legendre’s published approach was very different and introduced
nothing systematically helpful beyond basic calculation, and Germain’s work
was never published [BD]. In particular, the fact that for values of N of the
form 29p° for which p and a are relatively prime, Condition p-N-p follows
from 2-N-p, which latter is automatic in the presence of Condition N-C, was
essentially (re)discovered by Wendt in 1894 [We], and elaborated by Dickson
[Di3] and Vandiver [Va] in the twentieth century. Again we wonder how
progress on Fermat’s Last Theorem might have been substantially advanced
if Germain’s theoretical idea had not languished in her unread papers.

Legendre’s approach to large size of solutions

Legendre describes not just Sophie Germain’s Theorem and applications, but
also large size results similar to Germain’s, although he makes no mention
of his large size results having anything to do with her. Thus we should
compare their large size work as well.

Germain presents a theorem about large size, and quite dramatic specific
consequences, but the theorem is flawed and her attempts at general repair
appear inconclusive. Legendre, like Germain, studies whether all qualifying
auxiliary primes # must divide the same one of x, y, z that p? does, which
is where Germain went wrong in her original manuscript. Like Germain in
her errata, Legendre recognizes that the N-p~! condition would ensure the
desired @ divisibility. But he too presses on in an alternative direction, since
the condition is not necessarily (in fact perhaps not even often) satisfied.
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But here, just as much as in his differing approach to verifying the N-C and
p-N-p conditions, Legendre again chooses a completely different alternative
approach than does Germain.

Legendre analyzes the placement of the p-th power residues more deeply
in relation to the various expressions in equations (1), (2), (3) above, and
finds additional conditions, more delicate than that of N-p~!, which will en-
sure the desired 6 divisibility for concluding large size of solutions. Specifi-
cally, for example, when p = 5 Legendre has the same auxiliaries 0 = 11, 41,
71, 101 satisfying N-C and p-N-p as had Germain.?> However, as Germain
explicitly pointed out for # = 11 in her errata, Condition N-p~! fails; in fact
Legendre’s calculations show that it fails for all four auxiliaries. While Ger-
main attempted a general fix of her large size theorem using quadratic forms
and quadratic reciprocity, Legendre’s delicate analysis of the placement of
5-th powers shows that 11, 71, 101 (but not 41) must divide the same one
of z, y, z as p?, and so he deduces that some sum or difference of two of the
indeterminates must be divisible by 5911°71°101°, i.e., must have at least 31
digits. This is weaker than the even larger size Germain incorrectly deduced,
but it is a validly supported conclusion. Legendre successfully carries this
type of analysis on to exponents p = 7, 11, 13, concluding that this provides
strong numerical evidence for Fermat’s Last Theorem. But he does not at-
tempt a general theorem about large size of solutions, as did Germain. As
with their work on Conditions N-C and p-N-p, we are struck by the disjoint
approaches to large size of solutions taken by Germain and Legendre. It
seems clear that they each worked largely independently, and there is no
evidence in their manuscripts that they influenced each other.

4 Fermat’s Last Theorem for exponents of form
2(8n £+ 3)

Consider now what we call Manuscript B, entitled Démonstration de l’'impossibilité
de satisfaire en nombres entiers o 'équation z2(8n+3) = ¢2(8nE3) | 2(8nd3)
It seems clear that Germain has in mind that p = 8n £ 3 be prime, and
by the end of the manuscript, although it becomes difficult to decipher, she

32 Although Legendre never mentions the grand plan for proving Fermat’s Last Theorem,
he is interested in how many valid auxiliaries there may be for a given exponent. He claims
that between 101 and 1000 there are no auxiliaries for p = 5 satisfying the two conditions,
and that this must lead one to expect that 101 is the last. This presages Libri’s claims
that for each p there are only finitely many auxiliaries satisfying N-C, and is the one hint
we find in Legendre of a possible interest in the grand plan.
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claims to have proven Fermat’s Last Theorem for all exponents of the form
2 (8n %+ 3). Such a proof would be a stunning accomplishment.

Germain states and proves three theorems, and then has a final argument
leading to the title claim. We shall analyze this manuscript for its approach,
for its connection to her other manuscripts and to Legendre’s attribution to
her, and for its correctness.

Although Germain does not spell out the big picture, leaving the reader
to put it all together, it is clear that she is proceeding to prove Fermat’s
Last Theorem via the division we make today, between Case 1 and Case 2,
separately eliminating solutions in which the prime exponent p = 8n + 3

either does not or does divide one of z2, y?, 2% in the Fermat equation

(IL’Z)I) + (yQ)P — (ZQ)P.

4.1 Case 1 and Sophie Germain’s Theorem

Germain begins by claiming to eliminate solutions in which none are divisible
by p, and actually claims this for all odd prime exponents, writing

OXDXDXXXIXIXDO

Theorem 1. For any [odd] prime number p in the equation zP = zP + yP, one

of the three numbers z, x, or y will be a multiple of p*.33

OXDXIDXDXDXXIXDO

Today we name this Case 1 of Fermat’s Last Theorem, that solutions
must be p-divisible (Germain claims a little more, namely p? divisibility).
Note that there are no hypotheses as stated, since Germain wishes to evince
that Case 1 is true in general, and move on to Case 2 for the exponents
at hand. She does, however, immediately recognize that to prove this, she
requires something else:

OXDXIDXDXDXXIXDO

To demonstrate this theorem it suffices to suppose that there exists at least one
prime number 6 of the form 2Np + 1 for which at the same time one cannot
find two p'™™ power residues [mod 6] whose difference is one, and p is not a p'"
power residue [mod 6].34

33 “Théoreme premier. Quelque soit le nombre premier p dans Uéquation 2P = xP + yP
Pun des trois nombres z, © ou y sera multiple p>.”

34 “Pour démontrer ce théoreme il suffit de supposer qu’il existe au moins un nombre
premier 6 de la form 2Np+1 pour lequel en méme tems [sic] que l'on ne peut trouver deux

residus puissances p'°™¢ dont la difference soit I'unité p est non residu puissance p'**°.”
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OXDXDXXIXDXIXDO

Today we recognize this as the hypothesis of Sophie Germain’s Theorem,
whereas for her it was not just a hypothesis, but something she believed was
true and provable by her methods, since she goes on to say

OXDXDXXIXIXIXDO

Not only does there always exist a number 6 satisfying these two conditions,
but the course of calculation indicates that there must be an infinite number
of them. For example, if p=5,then § =2-54+1=11, 2-4-5+1 =41,
2.7-54+1=71, 2-10-5+1=101, etc.®

OXDXDXIXIXDXIXDO

Recall that Germain spends most of Manuscript A developing powerful
techniques that support this belief in Conditions NC and p-N-p, and confirm
them for p < 100, so it is not surprising that she wishes to claim to have
proven Case 1 of Fermat’s Last Theorem, even though she still recognizes
that there are implicit hypotheses she has not completely verified for all
exponents.

Germain’s proof of her Theorem 1 is much like the beginning of her proof
of the Large Size theorem of Manuscript A, which we laid out in section 3.
Recall that the Large Size proof went awry only after the p? divisibility
had been proven, so her proof here,?0 as there, proves p? divisibility with-
out question. This is the closest to an independent statement and proof we
find in her manuscripts of what today is called Sophie Germain’s Theorem.
However, most curiously, at the end of the proof of Theorem 1 she claims
also that the p? divisibility applies to the same one of z, y, z that is di-
visible by the auxiliary prime 6, which is the same as the claim, ultimately
inadequately supported, where her Large Size proof in Manuscript A began
to go wrong. While she makes no use of this additional claim here, so it
is harmless to her line of future argument in this manuscript, it leads us
to doubt a conjecture one could otherwise make about Manuscript B. One
could imagine that Theorem 1 was written down as a means of salvaging
what she could from the Large Size theorem, once she discovered the flaw
in the latter part of its proof. But since the essence of the flawed claim
there appears also here (without proof), even though without consequent
maleffect, we cannot argue that this manuscript contains a corrected more
limited version of the Large Size theorem argument.

35 “Non seulement il existe toujours un nombre @ qui satisfait a cette double condition
mais la marche du calcul indique qu’il doit s’entrouver une infinité p=5 0=2-5+1=
11, 2-4-5+1=41, 2-7-54+41=71, 2-10-5+1=101, etc.”

#0The proof of Theorem 1 in Manuscript B is largely reproduced, in translation, in [LP].
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4.2 Case 2 for p dividing 2

The rest of Manuscript B deals with Case 2 of Fermat’s Last Theorem, which
is characterized by equations (1), (2), (3) in section 3.1. For completeness,
we mention that Theorem 2 contains a technical result not relevant to the
line of proof Germain is developing. Perhaps she placed it and its proof here
simply because it was a result of hers about Case 2, which is the focus of
the rest of the manuscript.?”

As we continue with Case 2, notice that, by involving squares, the equa-
tion (3:2)1’ + (y2)p = (22)p has an asymmetry forcing separate consideration
of z from z or y in proving Fermat’s Last Theorem. Germain addresses the
first of these, the p-divisibility of z, in her Theorem 3, which asserts that z
cannot be a multiple of p, if p has the form 8n + 3, 8n 4+ 5, or 8n + 7. She
proves Theorem 3 by contradiction, by assuming that z is divisible by p.
Her proof actually begins with some equations that require some advance
derivation. Using the relative primality of the key numbers in each pair of
the Case 2 equations (1), (2), (3) of Manuscript A, for pairwise relatively
prime solutions x2, 32, 22 (once the extra p? divisibility is built in), the
reader may easily verify that the left trio of these equations becomes?®

1,2 + y2 — p4p—1l2p
22— 2
22— z? =%,
The text of Germain’s proof begins with these equations.

Germain quickly confirms Theorem 3 for p = 8n+ 3 and 8n+ 7 using the
fact, long known from Fermat’s time, that a sum of squares can contain no
prime divisors of these two forms. For p = 8n+ 5 she must argue differently,
as follows.

Because z — y and z + y (respectively z — z and z + z) are relatively
prime, one has z+y = (k') and z+x = (v')??, whence 32 = (')* (mod p)
and 22 = (v)* (mod p), yielding (W) + (v/)* = 0 (mod p) since 22 + 1>
is divisible by p. This she points out is a contradiction, since —1 is not a
biquadratic residue modulo 8n + 5.

37" Theorem 2 asserts that in the equations (1), (2), (3) pertaining in Case 2, the numbers
r, m, n can have prime divisors only of the form 2Np + 1, and that moreover, the prime
divisors of r must be of the even more restricted form 2Np? + 1. Legendre also credits
this result to Germain in his footnote.

3¥We do not see how she obtains 4p — 1 as exponent, rather than just 2p — 1, even after
including the stronger p® divisibility; but 2p — 1 suffices.
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The unfortunate flaw in this proof is perhaps not obvious at first. The 2p-
th power expressions for z+y and z+x rely on z —y and z+y (respectively
z —x and z + x) being relatively prime. This would be true from the
pairwise relative primality of z, y, z, if the numbers in each difference had
opposite parity, but otherwise their difference and sum have precisely 2 as
greatest common divisor. Writing (z7) 4 (y7)* = (2) and recalling basics
of Pythagorean triples, we see that opposite parity fails either for z — y or
z — x. Suppose without loss of generality that it is z — y. Then either
z —y or z + y has only a single 2 as factor (since y and z are relatively
prime), so it cannot be a 2p-th power. One can include this single factor of
2 and redo Germain’s analysis to the end, but one then finds that it comes
down to whether or not —4 is a biquadratic residue modulo 8n + 5, and this
unfortunately is true, rather than false as for —1. So Germain’s proof of
Theorem 3 appears fatally flawed for p = 8n + 5.

4.3 Case 2 for p dividing = or y

In her final argument after Theorem 3, Germain finishes Case 2 for p = 8n+3
and 8n — 3 by dealing with the second possible situation, where either x or
y is divisible by p. This argument again builds from enhanced versions of
equations similar to (1"), (2), (3), but is considerably more elaborate, rising
up through detailed study of the specific cases p = 5, 13, 29, until she is able
to end with an argument applying to all p = 8n + 3 and 8n — 3. However,
since the argument proceeds initially as did the proof of Theorem 3, it too
relies on the same mistaken assumption about relative primality that misses
an extra factor of 2, and one finds that accounting for this removes the
contradiction Germain aims for, no matter what value p has.

4.4 Manuscript B as source for Legendre?

In the end we must conclude that this proof of the bold claim to have proven
Fermat’s Last Theorem for many exponents fails due to an elementary mis-
take that any mathematician could make. But what is correct in Manuscript
B fits extremely well with what Legendre wrote about Germain’s work.
The manuscript contains precisely the results Legendre credits to Germain,
namely Sophie Germain’s Theorem and the technical result of Theorem 2
about the equations in the proof of Sophie Germain’s Theorem. Legendre
does not mention the claims in the manuscript that turn out not to be validly
proved. If Legendre used Germain’s Manuscript B as his source for what
he chose to publish as Germain’s, then he vetted it and extracted the parts
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that were correct.

5 Fermat’s Last Theorem for even exponents

Another tantalizing direction of Germain’s is provided by three pages that
we call Manuscript C.3? These pages contain highly polished statements with
proof of two theorems.

The first theorem claims that the “near-Fermat” equation 222" = 32" 4
22" has no natural number solutions for any even exponent 2n. In fact Ger-
main claims that her proof applies to an entire family of similar equations
in which the exponents are not always the same for all variables simultane-
ously. Her proof begins with a claimed parametric characterization of integer
solutions to the “near-Pythagorean” equation 2¢? = b + a2, similar to the
parametric characterization of Pythagorean triples (solutions to ¢ = b?+a?)
used by Euler in his proof of Fermat’s Last Theorem for exponent four [LP].
We are unfamiliar even with the beginning parametric description of Ger-
main’s, and will not try to analyze her proof further here, nor pronounce
any judgement on its correctness. Someone else may wish to pursue whether
it is valid or not. However, we do not know of modern evidence of a theorem
denying solutions to the near-Fermat equation 222" = y?" + 22",

Germain’s second claim is to prove Fermat’s Last Theorem for all even
exponents greater than two, and her proof relies directly on the previous
theorem. However, it seems to us that her proof likely flounders, as did the
proof above of Theorem 3 in Manuscript B, on another unjustified assump-
tion of relative primality of two expressions, in this case the two factors z—y
and 2" 1+ yz" 2 4+ y" 22 4 ¢! of 2" — ¢y, under only the assump-
tion that =, y, and 2z are pairwise relatively prime in the Fermat equation
227 = " 4+ 227 Tt does seem to us that Germain’s proof is fine, though, for
“Case 1”7 (modulo appeal to the previous theorem, of course), i.e., provided
that no factor of n divides x, y, or z, in which case the two factors above
will be relatively prime.

39Yet one more manuscript, claiming to dispense with even exponents by quite elemen-
tary means, is [Ge2, p. 90 (left)-90 (right)]. It contains a mistake that Germain went back
to, crossed out, and corrected. But she didn’t carry the corrected calculation forward,
likely because it is then obvious that it won’t produce the desired result, so is not worth
pursuing further.
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6 Germain’s approaches to Fermat’s Last Theo-
rem: précis and connections

Our analyses above of Sophie Germain’s manuscripts have revealed a wealth
of important unevaluated work on Fermat’s Last Theorem, calling for a
reassessment of her work and reputation. To prepare for our reevaluation
and conclusion, we now summarize what we have discovered mathematically
in these manuscripts, and see how it differs from the limited material upon
which Germain’s reputation has been built.

6.1 The grand plan to prove Fermat’s Last Theorem

In Manuscript A, Germain pioneers a grand plan for proving Fermat’s Last
Theorem for any prime exponent p > 2 based on satisfying a modular non-
consecutivity (N-C) condition for infinitely many auxiliary primes. She de-
velops an algorithm verifying the condition within certain ranges, and out-
lines an induction on auxiliaries to carry her plan forward. Her techniques
for N-C verification are completely different from, but just as extensive as,
Legendre’s, although his were for the purpose of proving Case 1, and were
also more ad hoc than hers. That Germain, as opposed to just Legendre,
even had any techniques for N-C verification, has been unknown to all sub-
sequent workers who have labored for almost two centuries to extend N-C
verification for proving Case 1. Germain likely abandoned further efforts at
her plan after Legendre suggested to her that it would fail for p = 3. She
sent him a proof confirming this, by showing that there are only finitely
many valid N-C auxiliaries.

Unlike Legendre’s, Germain’s methods and terminology adopt Gauss’
congruence language, and her techniques have in several respects an early
group-theoretic flavor. Reading her manuscript, we find ourselves almost
instinctively thinking in terms of the structure of the multiplicative group
of units modulo p. Germain’s approach for verifying N-C was independently
discovered by L. E. Dickson in the twentieth century. He, or earlier workers,
could easily have obtained a jump start on their own work by taking their
cue from Germain’s methods, had they known of them. Recent researchers
have again approached N-C by induction, as did Germain.

6.2 Large size of solutions and Sophie Germain’s Theorem

Also in Manuscript A, Germain writes a theorem and applications to force
extremely large minimal sizes for solutions to Fermat equations, based on
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satisfying both the N-C and p-N-p conditions. She later realized a flaw in the
proof, and attempted to repair it using her knowledge of quadratic residues.
The valid part of the proof yields what we call Sophie Germain’s Theorem,
which then allows proof of p2-divisibility of solutions, and therefore Case 1.
Germain’s efforts to satisfy the p-N-p condition are based on her theoretical
result showing that it will often follow from the 2-N-p condition, which
she has already studied for N-C. This then makes it in practice very easy
to verify p-N-p, once again unlike Legendre’s different and more ad hoc
methods. Again, later researchers could have begun where Germain left off,
had they known of her methods. Instead, her result obtaining p-N-p from
2-N-p was also independently discovered much later, by Wendt, Dickson,
and Vandiver in their efforts to prove Case 1.

6.3 Exponents 2 (8n + 3) and Sophie Germain’s Theorem

In Manuscript B, Germain makes a very creditable attempt to prove Fer-
mat’s Last Theorem for all exponents 2p where p = 8n 4+ 3 is prime. This
would have been a major accomplishment. Germain begins with a proof
of what we call Sophie Germain’s Theorem, in order to argue for Case 1.
Manuscript B provides us with our best original source for the theorem for
which she is famous. Her subsequent argument for Case 2 boils down to
knowledge about biquadratic residues. This latter contains a flaw related
to relative primality. The manuscript fits well as a primary source for what
Legendre credited to Germain.

6.4 Even exponents

In Manuscript C, Germain writes two theorems and their proofs to establish
Fermat’s Last Theorem for all even exponents, by methods completely unlike
those in her other manuscripts. These, too, would be stunning achievements.
She plans to prove Fermat’s Last Theorem by showing first that a slightly
different family of Diophantine equations has no solutions. So she begins
by claiming that the “near-Fermat” equations 22" = " + 22" (and whole
families of related equations) have no positive solutions. Her proof of this
claim begins by assuming that the reader is already familiar with a paramet-
ric characterization of “near-Pythagorean triples” satisfying 2¢? = b? + a2,
which we are not. While this proof may well be correct, her proof of Fer-
mat’s Last Theorem for even exponents, based on this “near-Fermat result,”
suffers from the same flaw for Case 2 as in Manuscript B, which would have
been caught by careful collegial reading. For Case 1 it appears to be correct.
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7 Reevaluation of Germain’s work in number the-
ory

7.1 Germain as strategist: theories and techniques

We see that Germain focused on big, general theorems applicable to infi-
nitely many prime exponents, rather than simply tackling single exponents
as usually done by others. In this work, she developed general theories and
techniques quite multifaceted both in goal and methods. She did not focus
overly on examples or ad hoc solutions. She also used to great advantage the
modern point of view on number theory espoused by Gauss. The significance
of Germain’s theoretical techniques for verifying conditions N-C and p-N-p
is indicated by their rediscovery and use much later by Wendt, Dickson, and
Vandiver, and a very recent revival of the approach by mathematical induc-
tion. Moreover, her approach to these was more systematic and theoretical
than Legendre’s pre-Gaussian and completely different methods.

These features of her work demonstrate that, contrary to what has been
thought by some, Sophie Germain was not a dabbler in number theory who
happened to light upon one significant theorem. In fact, what we call So-
phie Germain’s Theorem is simply fallout from within two separate much
grander engagements we find in her papers, fallout that we can retrospec-
tively isolate, but which she did not. It seems that it is we and Legendre,
not Germain, who have created “Sophie Germain’s Theorem” as an entity.

We suggest that Sophie Germain would be disappointed to learn that
for almost two hundred years, the aftereffect of Legendre singling out for
publication a single provable “theorem” due to her, albeit presumably well-
intended, rendered all her various mathematical attacks on Fermat’s Last
Theorem invisible and languishing in her unread and unpublished personal
papers. It is also unfortunate that no one has known before now that all the
results published by Legendre verifying conditions N-C and p-N-p, quoted
and used extensively by others to the present, are due but uncredited to
Germain, by more sophisticated and theoretical methods.

Germain’s was an ambitious and bold mathematical agenda. She tackled
what we know in retrospect was one of the hardest problems in mathemat-
ics. It should therefore be no surprise that her attempts at broad results
probably never succeeded in actually proving Fermat’s Last Theorem even
for a single exponent, although she seems to have come close a number of
times. Germain in a sense missed out on greater fame by aiming too high.
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7.2 Interpreting the errors in Germain’s manuscripts

Mathematicians often make errors in their private work, usually winnowed
out before publication through their own revisions, reactions to presenta-
tions, informal review by supportive colleagues, or the process of publication.
We have seen that several of Germain’s manuscripts on Fermat’s Last The-
orem contain errors in her proofs. But there are several mitigating factors
we must consider.

First, in a sense we are cheating and short-circuiting the normal processes
by peeking at Germain’s private papers, works she chose never to submit
for publication, even had she shown them to anyone. Perhaps she knew
of the errors we see, but chose to keep these papers in a drawer for later
revival via new ideas, as any mathematician might do. We can see explicitly
that she later recognized one big error, in her Large Size of Solutions proof,
and wrote an errata attempting remedy. And we also see the retrospective
correction of an error in another proof, of Fermat’s Last Theorem for even
exponents, then put aside because it left the rest of the proof irremediable.

Second, let us assess the mathematical nature of the mistakes in her
manuscripts. In elasticity theory, where the holes in her societally forced
self-taught education were serious and difficult to remediate on her own
[BD], Germain suffered from persistent conceptual difficulties leading to re-
peated serious criticisms of her work. By contrast, number theory perhaps
lent itself better than elasticity theory to effective independent work based
on self-education, in part because it was essentially entirely reinvented in
Gauss’ single book. Germain had been able to train herself well from the
books of both Legendre and Gauss, and she shows careful work based es-
pecially on Gauss’ Disquisitiones Arithmeticae as her guide. The mistakes
we have found in her number theory manuscripts are characteristic of those
any mathematician might easily make, an annoying slip of the mind to be
caught later in each case, rather than any conceptual misunderstanding. In
particular, her entire grand plan for proving Fermat’s Last Theorem, in-
cluding algorithms for verifying Conditions N-C and p-N-p, were all on very
sound footing. So her mistakes should be considered minor, even though
they happen to leave her big claims about large size and proving Fermat’s
Last Theorem for various families of exponents unproven.

Further, we should ask what evaluation by peers Germain’s manuscripts
received, either by helpful individuals or institutions, that should have brought
errors to her attention. Here we will encounter more a puzzle than an an-
swer.
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7.3 Review by others versus isolation
Germain’s elasticity theory: praise and neglect

There is already solid evidence [BD] that during Germain’s long process of
working to solve the elasticity problem in mathematical physics,’ she re-
ceived ever decreasing collegial review and honest critique of her work. In
fact, towards the end perhaps none. Publicly praised as genius and mar-
vel, she was increasingly ignored privately and institutionally when it came
to discourse about her elasticity work. There is noevidence of any individ-
ual intentionally wishing her harm, and indeed some tried personally to be
quite supportive. But the existing system ensured that she lacked early solid
training or sufficiently detailed and constructive critique that might have en-
abled her to be more successful in her elasticity research. Germain labored
continually under marginalizing handicaps of lack of access to materials and
normal personal or institutional discourse, strictures that male mathemati-
cians did not experience [BD]. The evidence suggests that Germain in effect
worked in substantial isolation much of the time.

Germain’s interactions about Fermat’s Last Theorem: the evi-
dence

Given the social features dominating Germain’s work in elasticity theory,
what was the balance between collegial interaction and isolation in her work
on Fermat’s Last Theorem? Specifically, we will focus on what to make
of the disparity between the techniques of Germain and Legendre for their
many identical results on the Fermat problem. And we will ask what of
Germain’s work and results was seen by Legendre, or anyone?

We have no actually published work by Germain herself on Fermat’s
Last Theorem. Even though much of the work we have described in her
manuscripts would have been eminently publishable, such as her theoretical
means of verifying the N-C and p-N-p conditions for applying Sophie Ger-
main’s Theorem to prove Case 1, it never was. While we could speculate on
reasons for this, it certainly means that it didn’t receive any formal institu-
tutional review. Nor presumably could Germain easily present her work to
the Academy of Sciences, like her male contemporaries.

40The Academy’s elasticity prize competition was announced in 1809, twice extended,
and Germain eventually received the award in 1816. Thereafter she carried out efforts at
personal, rather than institutional, publication of her work on elasticity theory, stretching
long into the 1820s [BD].
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Despite having analyzed a wealth of mathematics in Germain’s manu-
scripts, we still have little to go on when considering her interactions with
others. Germain’s manuscripts say nothing directly about outside influ-
ences, so we must infer them from their mathematical content alone. And
Germain’s 1819 letter to Gauss focused on the broad scope of her work on
Fermat’s Last Theorem, but did not mention any direct contact with others,
and apparently received no response from Gauss.

On the bright side, while Legendre’s footnote is only a brief statement
of credit, we can compare it very profitably with our study of the content
of Germain’s manuscripts. And we also have one highly relevant piece of
correspondence, Germain’s letter to Legendre confirming back to him from
the previous day’s conversation that her grand plan will not work. From
these we can draw some important and interesting conclusions.

Legendre and Germain: A perplexing record

Legendre’s footnote and Germain’s letter to him indicate that they had
mathematically meaningful contact about the Fermat problem, although
we do not know how frequently, or much about its nature. What then
does our study of her most polished manuscripts suggest? First, it is a
real surprise to have found from Manuscript A that Germain and Legendre
each had very extensive techniques for verifying Conditions N-C and p-N-p,
but that they are completely disjoint approaches, devoid of mathematical
overlap. Their methods were obviously developed completely independently,
hardly what one would expect from two mathematicians in close contact. By
contrast, Legendre’s crediting footnote details exactly the results that are
correct from Germain’s Manuscript B, namely Sophie Germain’s Theorem
and an additional technical result about the equations in its proof. So while
Manuscript B, along with her separate table of residues and auxiliaries,
is an extremely plausible source for Legendre’s credit to her, Germain’s
Manuscript A shows completely independent but parallel work left invisible
by Legendre’s treatise.

So where does this leave Manuscript A? It contains Germain’s grand
plan, along with all her methods and theoretical results for verifying N-C
and p-N-p, and her large size theorem. This seems like her most substantial
work, and yet we can find not a speck of evidence in Legendre’s 1823 trea-
tise suggesting that he had actually seen Germain’s Manuscript A, despite
it being placed by her letter to Gauss at considerably prior to 1819. The
only evidence we have that Legendre knew of her grand plan is Germain’s
letter to him proving that it will not work for p = 3. But even if this failure
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were his reason for not mentioning the grand plan at all in his treatise, why
is Legendre mute about Germain through the many pages of results iden-
tical to hers that he proves, by completely different means, on Conditions
N-C and p-N-p for establishing Case 17 Extensions of these results have
been important to future work ever since, but no one has known that these
were equally due to Germain, and by more powerful methods. If Legendre
had seen Manuscript A, he knew all about Germain’s methods, and could
and should have credited her in the same way he did for what is in Manu-
script B. We must therefore at least consider, did Legendre, or anyone else,
ever see Manuscript A and so comprehend most of Germain’s work on Fer-
mat’s Last Theorem, let alone provide her with constructive feedback? It
is reasonable to be skeptical. Earlier correspondence with Legendre shows
that, while he was a great personal mentor to her initially during the elas-
ticity competition, and seems always to have been a friend and supporter,
he withdrew somewhat from mentorship in frustration as the competition
progressed [BD, p. 63]. Did this withdrawal carry over somehow to con-
tact about Fermat’s Last Theorem? Without finding more correspondence
between them about the topic, we may never know whether Germain had
much extensive or intensive communication with anyone about her work on
Fermat’s Last Theorem.

The Fermat prize competition

There was one final possible avenue for review of Germain’s work on the
Fermat problem. At the same session of the Academy of Sciences in 1816
at which Sophie Germain was awarded the prize for the competition on
elasticity, a new competition was set, on the Fermat problem. Extended
in 1818, it was retired in 1820 with no award, and Sophie Germain never
made a submission [BD]. And yet, together, our manuscript evidence and
the 1819 date of her letter to Gauss, strongly suggest that she was working
hard on the problem during the years of the prize competition, perhaps even
stimulated greatly by it.

Why did she not submit a manuscript for this new prize, given the enor-
mous progress on the Fermat problem we have found in her manuscripts,
and the meticulous and comprehensive appearance of her work in Manu-
script A, which appears prepared for public consumption. Was Germain’s
reluctance due to previous frustrating experiences from her multiple sub-
missions for the elasticity prize through its two extensions—a process that
often lacked helpful critiques or suggested directions for improvement [BD].
Or, having been particularly criticized for incompleteness during the elas-
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ticity prize competititon, did she simply know she had not definitely proved
Fermat’s Last Theorem in full, and hence felt she had nothing yet sufficient
to submit.

8 Conclusion

The impression to date has been that Germain could have accomplished
so much more had she enjoyed the normal access to education, collegial
interaction and review, professional institutions, and publication accorded
to male mathematicians [BD]. Our study of her manuscripts bolsters this
perspective. The evidence from Germain’s manuscripts, and comparison of
her work with that of Legendre and later researchers, displays dramatic,
sophisticated, multifaceted, independent work on Fermat’s Last Theorem,
considerably more extensive than what we have from Legendre’s crediting
footnote. It corroborates the isolation within which she worked, and sug-
gests that sadly much of this impressive work may never have been seen
by others, certainly not by a wider audience like ourselves. We see that
Germain was clearly a strategist, who singlehandedly created and pushed
full-fledged programs towards Fermat’s Last Theorem, and developed pow-
erful theoretical techniques for carrying these out, such as her methods for
verifying Conditions N-C and p-N-p. We are reminded again of her letter to
Gauss: “I will give you a sense of my absorption with this area of research
by admitting to you that even without any hope of success, I still prefer it
to other work which might interest me while I think about it, and which is
sure to yield results.” Sophie Germain was a much more impressive number
theorist than anyone has ever known.
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